Location

Grand Wailea, Hawaii

Event Website

https://hicss.hawaii.edu/

Start Date

7-1-2020 12:00 AM

End Date

10-1-2020 12:00 AM

Description

Research on computer-supported collaborative learning (CSCL) often employs content analysis as an approach to investigate message quality in asynchronous online discussions using systematic message-coding schemas. Although this approach helps researchers count the frequencies by which students engage in different socio-cognitive actions, it does not explain how students articulate their ideas in categorized messages. This study investigates the effects of a recommender system on the quality of students’ messages from voluminous discussions. We employ learning analytics to produce a quasi-quality index score for each message. Moreover, we examine the relationship between this score and the phases of a popular message-coding schema. Empirical findings show that a custom CSCL environment extended by a recommender system supports students to explore different viewpoints and modify interpretations with higher quasi-quality index scores than students assigned to the control software. Theoretical and practical implications are also discussed.

Share

COinS
 
Jan 7th, 12:00 AM Jan 10th, 12:00 AM

Integrating Learning Analytics to Measure Message Quality in Large Online Conversations

Grand Wailea, Hawaii

Research on computer-supported collaborative learning (CSCL) often employs content analysis as an approach to investigate message quality in asynchronous online discussions using systematic message-coding schemas. Although this approach helps researchers count the frequencies by which students engage in different socio-cognitive actions, it does not explain how students articulate their ideas in categorized messages. This study investigates the effects of a recommender system on the quality of students’ messages from voluminous discussions. We employ learning analytics to produce a quasi-quality index score for each message. Moreover, we examine the relationship between this score and the phases of a popular message-coding schema. Empirical findings show that a custom CSCL environment extended by a recommender system supports students to explore different viewpoints and modify interpretations with higher quasi-quality index scores than students assigned to the control software. Theoretical and practical implications are also discussed.

https://aisel.aisnet.org/hicss-53/cl/teaching_and_learning_technologies/6