Location

Grand Wailea, Hawaii

Event Website

https://hicss.hawaii.edu/

Start Date

7-1-2020 12:00 AM

End Date

10-1-2020 12:00 AM

Description

Social media platforms are increasingly used during disasters. In the U.S., victims consider these platforms to be reliable news sources and they believe first responders will see what they publicly post. While having ways to request help during disasters might save lives, this information is difficult to find because non-relevant content on social media completely overshadows content reflective of who needs help. To resolve this issue, we develop a framework for classifying hurricane-related images that have been human-annotated. Our transfer learning framework classifies each image using the VGG-16 convolutional neural network and multi-layer perceptron classifiers according to the urgency, relevance, and time period, in addition to the presence of damage and relief motifs. We find that our framework not only successfully functions as an accurate method for hurricane-related image classification, but also that real-time classification of social media images using a small training set is possible.

Share

COinS
 
Jan 7th, 12:00 AM Jan 10th, 12:00 AM

DisasterNet: Evaluating the Performance of Transfer Learning to Classify Hurricane-Related Images Posted on Twitter

Grand Wailea, Hawaii

Social media platforms are increasingly used during disasters. In the U.S., victims consider these platforms to be reliable news sources and they believe first responders will see what they publicly post. While having ways to request help during disasters might save lives, this information is difficult to find because non-relevant content on social media completely overshadows content reflective of who needs help. To resolve this issue, we develop a framework for classifying hurricane-related images that have been human-annotated. Our transfer learning framework classifies each image using the VGG-16 convolutional neural network and multi-layer perceptron classifiers according to the urgency, relevance, and time period, in addition to the presence of damage and relief motifs. We find that our framework not only successfully functions as an accurate method for hurricane-related image classification, but also that real-time classification of social media images using a small training set is possible.

https://aisel.aisnet.org/hicss-53/cl/crisis_and_emergency_management/2