Location
Grand Wailea, Hawaii
Event Website
https://hicss.hawaii.edu/
Start Date
8-1-2019 12:00 AM
End Date
11-1-2019 12:00 AM
Description
Application Stores, such as the iTunes App Store, give developers access to their users’ complaints and requests in the form of app reviews. However, little is known about how developers are responding to app reviews. Without such knowledge developers, users, App Stores, and researchers could build upon wrong foundations. To address this knowledge gap, in this study we focus on feedback loops, which occur when developers address a user concern. To conduct this study we use both supervised and unsupervised methods to automatically analyze a corpus of 1752 different apps from the iTunes App Store consisting of 30,875 release notes and 806,209 app reviews. We found that 18.7% of the apps in our corpus contain instances of feedback loops. In these feedback loops we observed interesting behaviors. For example, (i) feedback loops with feature requests and login issues were twice as likely as general bugs to be fixed by developers, (ii) users who reviewed with an even tone were most likely to have their concerns addressed, and (iii) the star rating of the app reviews did not influence the developers likelihood of completing a feedback loop.
Examining User-Developer Feedback Loops in the iOS App Store
Grand Wailea, Hawaii
Application Stores, such as the iTunes App Store, give developers access to their users’ complaints and requests in the form of app reviews. However, little is known about how developers are responding to app reviews. Without such knowledge developers, users, App Stores, and researchers could build upon wrong foundations. To address this knowledge gap, in this study we focus on feedback loops, which occur when developers address a user concern. To conduct this study we use both supervised and unsupervised methods to automatically analyze a corpus of 1752 different apps from the iTunes App Store consisting of 30,875 release notes and 806,209 app reviews. We found that 18.7% of the apps in our corpus contain instances of feedback loops. In these feedback loops we observed interesting behaviors. For example, (i) feedback loops with feature requests and login issues were twice as likely as general bugs to be fixed by developers, (ii) users who reviewed with an even tone were most likely to have their concerns addressed, and (iii) the star rating of the app reviews did not influence the developers likelihood of completing a feedback loop.
https://aisel.aisnet.org/hicss-52/st/mobile_app_development/3