Location
Grand Wailea, Hawaii
Event Website
https://hicss.hawaii.edu/
Start Date
8-1-2019 12:00 AM
End Date
11-1-2019 12:00 AM
Description
We introduce a novel extension of the iterative classification algorithm to heterogeneous graphs and apply it to estimate credibility in social media. Given a heterogeneous graph of events, users, and websites derived from social media posts, and given prior knowledge of the credibility of a subset of graph nodes, the approach iteratively converges to a set of classifiers that estimate credibility of the remaining nodes. To measure the performance of this approach, we train on a set of manually labeled events extracted from a corpus of Twitter data and calculate the resulting receiver operating characteristic (ROC) curves. We show that collective classification outperforms independent classification approaches, implying that graph dependencies are crucial to estimating credibility in social media.
Collective Classification for Social Media Credibility Estimation
Grand Wailea, Hawaii
We introduce a novel extension of the iterative classification algorithm to heterogeneous graphs and apply it to estimate credibility in social media. Given a heterogeneous graph of events, users, and websites derived from social media posts, and given prior knowledge of the credibility of a subset of graph nodes, the approach iteratively converges to a set of classifiers that estimate credibility of the remaining nodes. To measure the performance of this approach, we train on a set of manually labeled events extracted from a corpus of Twitter data and calculate the resulting receiver operating characteristic (ROC) curves. We show that collective classification outperforms independent classification approaches, implying that graph dependencies are crucial to estimating credibility in social media.
https://aisel.aisnet.org/hicss-52/dsm/data_mining/4