Location

Grand Wailea, Hawaii

Event Website

https://hicss.hawaii.edu/

Start Date

8-1-2019 12:00 AM

End Date

11-1-2019 12:00 AM

Description

Workload modeling in public cloud environments is challenging due to reasons such as infrastructure abstraction, workload heterogeneity and a lack of defined metrics for performance modeling. This paper presents an approach that applies statistical methods for distribution analysis, parameter estimation and Goodness-of-Fit (GoF) tests to develop theoretical (estimated) models of heterogeneous workloads on Amazon's public cloud infrastructure using compute, memory and IO resource utilization data.

Share

COinS
 
Jan 8th, 12:00 AM Jan 11th, 12:00 AM

Statistical Analysis and Modeling of Heterogeneous Workloads on Amazon's Public Cloud Infrastructure

Grand Wailea, Hawaii

Workload modeling in public cloud environments is challenging due to reasons such as infrastructure abstraction, workload heterogeneity and a lack of defined metrics for performance modeling. This paper presents an approach that applies statistical methods for distribution analysis, parameter estimation and Goodness-of-Fit (GoF) tests to develop theoretical (estimated) models of heterogeneous workloads on Amazon's public cloud infrastructure using compute, memory and IO resource utilization data.

https://aisel.aisnet.org/hicss-52/da/service_analytics/3