Location
Grand Wailea, Hawaii
Event Website
https://hicss.hawaii.edu/
Start Date
8-1-2019 12:00 AM
End Date
11-1-2019 12:00 AM
Description
Accurate forecast of the demand for emergency medical services (EMS) can help in providing quick and efficient medical treatment and transportation of out-of-hospital patients. The aim of this research was to develop a forecasting model and investigate which factors are relevant to include in such model. The primary data used in this study was information about ambulance calls in three Swedish counties during the years 2013 and 2014. This information was processed, assigned to spatial grid zones and complemented with population and zone characteristics. A Zero-Inflated Poisson (ZIP) regression approach was then used to select significant factors and develop the forecasting model. The model was compared to the forecasting model that is currently incorporated in the EMS information system used by the ambulance dispatchers. The results show that the proposed model performs better than the existing one.
Forecasting the Demand for Emergency Medical Services
Grand Wailea, Hawaii
Accurate forecast of the demand for emergency medical services (EMS) can help in providing quick and efficient medical treatment and transportation of out-of-hospital patients. The aim of this research was to develop a forecasting model and investigate which factors are relevant to include in such model. The primary data used in this study was information about ambulance calls in three Swedish counties during the years 2013 and 2014. This information was processed, assigned to spatial grid zones and complemented with population and zone characteristics. A Zero-Inflated Poisson (ZIP) regression approach was then used to select significant factors and develop the forecasting model. The model was compared to the forecasting model that is currently incorporated in the EMS information system used by the ambulance dispatchers. The results show that the proposed model performs better than the existing one.
https://aisel.aisnet.org/hicss-52/da/service_analytics/2