Location
Grand Wailea, Hawaii
Event Website
https://hicss.hawaii.edu/
Start Date
8-1-2019 12:00 AM
End Date
11-1-2019 12:00 AM
Description
This paper investigates the relationship between Twitter metrics and stock price performance of a company. The objective of this research is to contribute to the area of research that seeks to uncover the business value of social media platforms. Building on prior research, this paper identifies two categories of metrics that have been used to examine the relationship between Twitter metrics and stock performance of a company, namely traffic and motivation. While traffic is measured as volume of tweets, motivation is measured from two perspectives; polarity (positive, neutral, and negative) and emotion (positive emotion and negative emotion). Unstructured data from Twitter and Yahoo finance Website about Amazon was gathered to test the study hypothesis. A combination of machine learning techniques for text analytics and hierarchical regression analysis was used to analyze the data. Results indicate that emotional motivation expressed in tweets sent out by a company positively influences the company’s stock performance.
You are What You Say: The Influence of Company Tweets on Its Stock Performance
Grand Wailea, Hawaii
This paper investigates the relationship between Twitter metrics and stock price performance of a company. The objective of this research is to contribute to the area of research that seeks to uncover the business value of social media platforms. Building on prior research, this paper identifies two categories of metrics that have been used to examine the relationship between Twitter metrics and stock performance of a company, namely traffic and motivation. While traffic is measured as volume of tweets, motivation is measured from two perspectives; polarity (positive, neutral, and negative) and emotion (positive emotion and negative emotion). Unstructured data from Twitter and Yahoo finance Website about Amazon was gathered to test the study hypothesis. A combination of machine learning techniques for text analytics and hierarchical regression analysis was used to analyze the data. Results indicate that emotional motivation expressed in tweets sent out by a company positively influences the company’s stock performance.
https://aisel.aisnet.org/hicss-52/da/machine_learning_in_finance/3