Location

Grand Wailea, Hawaii

Event Website

https://hicss.hawaii.edu/

Start Date

8-1-2019 12:00 AM

End Date

11-1-2019 12:00 AM

Description

Automated trading system (ATS) is a computer program that combines different trading rules to find optimal trading opportunities. The objects of ATS, which are financial assets, need evaluation because that is of great significance for stakeholders and market orders. From the perspectives of dealers, agents, external environment, and objects themselves, this study explored factors in evaluating and choosing the object of ATS. Based on design science research (DSR), we presented a preliminary evaluation framework and conducted semi-structured interviews with twelve trading participants engaged in different occupations. By analyzing the data collected, we validated eight factors from literatures and found four new factors and fifty-four sub-factors. Additionally, this paper developed a relationship model of factors. The results could be used in future work to explore and validate more evaluation factors by using data mining.

Share

COinS
 
Jan 8th, 12:00 AM Jan 11th, 12:00 AM

Exploring Evaluation Factors and Framework for the Object of Automated Trading System

Grand Wailea, Hawaii

Automated trading system (ATS) is a computer program that combines different trading rules to find optimal trading opportunities. The objects of ATS, which are financial assets, need evaluation because that is of great significance for stakeholders and market orders. From the perspectives of dealers, agents, external environment, and objects themselves, this study explored factors in evaluating and choosing the object of ATS. Based on design science research (DSR), we presented a preliminary evaluation framework and conducted semi-structured interviews with twelve trading participants engaged in different occupations. By analyzing the data collected, we validated eight factors from literatures and found four new factors and fifty-four sub-factors. Additionally, this paper developed a relationship model of factors. The results could be used in future work to explore and validate more evaluation factors by using data mining.

https://aisel.aisnet.org/hicss-52/da/decision_support_for_smart_cities/3