Location

Hilton Waikoloa Village, Hawaii

Event Website

http://hicss.hawaii.edu/

Start Date

1-3-2018

End Date

1-6-2018

Description

We investigate the problem of scheduling a set of tasks with individual deadlines and conditional precedence constraints on a heterogeneous Network on Chip (NoC)-based Multi-Processor System-on-Chip (MPSoC) such that the total expected energy consumption of all the tasks is minimized, and propose a novel approach. Our approach consists of a scheduling heuristic for constructing a single unified schedule for all the tasks and assigning a frequency to each task and each communication assuming continuous frequencies, an Integer Linear Programming (ILP)-based algorithm and a polynomial time heuristic for assigning discrete frequencies and voltages to tasks and communications. We have performed experiments on 16 synthetic and 4 real-world benchmarks. The experimental results show that compared to the state-of-the-art approach, our approach using the ILP-based algorithm and our approach using the polynomial-time heuristic achieve average improvements of 31% and 20%, respectively, in terms of energy reduction.

Share

COinS
 
Jan 3rd, 12:00 AM Jan 6th, 12:00 AM

Energy-Aware Scheduling of Conditional Task Graphs on NoC-Based MPSoCs

Hilton Waikoloa Village, Hawaii

We investigate the problem of scheduling a set of tasks with individual deadlines and conditional precedence constraints on a heterogeneous Network on Chip (NoC)-based Multi-Processor System-on-Chip (MPSoC) such that the total expected energy consumption of all the tasks is minimized, and propose a novel approach. Our approach consists of a scheduling heuristic for constructing a single unified schedule for all the tasks and assigning a frequency to each task and each communication assuming continuous frequencies, an Integer Linear Programming (ILP)-based algorithm and a polynomial time heuristic for assigning discrete frequencies and voltages to tasks and communications. We have performed experiments on 16 synthetic and 4 real-world benchmarks. The experimental results show that compared to the state-of-the-art approach, our approach using the ILP-based algorithm and our approach using the polynomial-time heuristic achieve average improvements of 31% and 20%, respectively, in terms of energy reduction.

https://aisel.aisnet.org/hicss-51/st/mobile_app_development/4