Location

Hilton Waikoloa Village, Hawaii

Event Website

http://hicss.hawaii.edu/

Start Date

1-3-2018

End Date

1-6-2018

Description

Opioid overdose is a growing public health emergency in the United States. The antidote naloxone must be administered rapidly after opioid overdose to prevent death. Bystander or "take-home" naloxone programs distribute naloxone to opioid users and other community members to increase naloxone availability at the time of overdose. However, data describing the natural history of take- home naloxone in the hands of at-risk individuals is lacking. To understand patterns of naloxone uptake in at-risk users, we developed a smart naloxone kit that uses low-energy Bluetooth (BLE) to unobtrusively detect the transit of naloxone through a hospital campus. In this paper, we describe development of the smart naloxone kit and results from the first 10 participants in our pilot study.

Share

COinS
 
Jan 3rd, 12:00 AM Jan 6th, 12:00 AM

Low-energy Bluetooth for Detecting Real-world Penetrance of Bystander Naloxone Kits: A Pilot Study

Hilton Waikoloa Village, Hawaii

Opioid overdose is a growing public health emergency in the United States. The antidote naloxone must be administered rapidly after opioid overdose to prevent death. Bystander or "take-home" naloxone programs distribute naloxone to opioid users and other community members to increase naloxone availability at the time of overdose. However, data describing the natural history of take- home naloxone in the hands of at-risk individuals is lacking. To understand patterns of naloxone uptake in at-risk users, we developed a smart naloxone kit that uses low-energy Bluetooth (BLE) to unobtrusively detect the transit of naloxone through a hospital campus. In this paper, we describe development of the smart naloxone kit and results from the first 10 participants in our pilot study.

https://aisel.aisnet.org/hicss-51/hc/biosensor_in_healthcare/3