Location

Hilton Waikoloa Village, Hawaii

Event Website

http://hicss.hawaii.edu/

Start Date

1-3-2018

End Date

1-6-2018

Description

This paper describes a Weather Impact Model (WIM) capable of serving a variety of predictive applications ranging from real-time operation and day-ahead operation planning, to asset and outage management. The proposed model is capable of combining various weather parameters into different weather impact features of interest to a specific application. This work focuses on the development of a universal weather impacts model based on the logistic regression embedded in a Geographic Information System (GIS). It is capable of merging massive data sets from historical outage and weather data, to real-time weather forecast and network monitoring measurements, into a feature known as weather hazard probability. The examples of the outage and asset management applications are used to illustrate the model capabilities.

Share

COinS
 
Jan 3rd, 12:00 AM Jan 6th, 12:00 AM

Systematic Framework for Integration of Weather Data into Prediction Models for the Electric Grid Outage and Asset Management Applications

Hilton Waikoloa Village, Hawaii

This paper describes a Weather Impact Model (WIM) capable of serving a variety of predictive applications ranging from real-time operation and day-ahead operation planning, to asset and outage management. The proposed model is capable of combining various weather parameters into different weather impact features of interest to a specific application. This work focuses on the development of a universal weather impacts model based on the logistic regression embedded in a Geographic Information System (GIS). It is capable of merging massive data sets from historical outage and weather data, to real-time weather forecast and network monitoring measurements, into a feature known as weather hazard probability. The examples of the outage and asset management applications are used to illustrate the model capabilities.

https://aisel.aisnet.org/hicss-51/es/resillient_networks/4