Location
Hilton Waikoloa Village, Hawaii
Event Website
http://hicss.hawaii.edu/
Start Date
1-3-2018
End Date
1-6-2018
Description
In recent years, we have witnessed an unprecedented proliferation of large document collections. This development has spawned the need for appropriate analytical means. In particular, to seize the thematic composition of large document collections, researchers increasingly draw on quantitative topic models. Among their most prominent representatives is the Latent Dirichlet Allocation (LDA). Yet, these models have significant drawbacks, e.g. the generated topics lack context and thus meaningfulness. Prior research has rarely addressed this limitation through the lens of mixed-methods research. We position our paper towards this gap by proposing a structured mixed-methods approach to the meaningful analysis of large document collections. Particularly, we draw on qualitative coding and quantitative hierarchical clustering to validate and enhance topic models through re-contextualization. To illustrate the proposed approach, we conduct a case study of the thematic composition of the AIS Senior Scholars' Basket of Journals.
Understanding Topic Models in Context: A Mixed-Methods Approach to the Meaningful Analysis of Large Document Collections
Hilton Waikoloa Village, Hawaii
In recent years, we have witnessed an unprecedented proliferation of large document collections. This development has spawned the need for appropriate analytical means. In particular, to seize the thematic composition of large document collections, researchers increasingly draw on quantitative topic models. Among their most prominent representatives is the Latent Dirichlet Allocation (LDA). Yet, these models have significant drawbacks, e.g. the generated topics lack context and thus meaningfulness. Prior research has rarely addressed this limitation through the lens of mixed-methods research. We position our paper towards this gap by proposing a structured mixed-methods approach to the meaningful analysis of large document collections. Particularly, we draw on qualitative coding and quantitative hierarchical clustering to validate and enhance topic models through re-contextualization. To illustrate the proposed approach, we conduct a case study of the thematic composition of the AIS Senior Scholars' Basket of Journals.
https://aisel.aisnet.org/hicss-51/da/data_text_web_mining/2