Location

Hilton Waikoloa Village, Hawaii

Event Website

http://www.hicss.hawaii.edu

Start Date

1-4-2017

End Date

1-7-2017

Description

With the expansion of consumer market, the appearance becomes an important issue when consumers make decisions under the situation of similar qualities and contents. Accordingly, to attract consumers, companies cost and take much attention on product appearance. Compared to using questionnaires individually, obtaining humans’ thoughts directly from their brains can accurately grasp the actual preference of consumers, which can provide effective and precious decisions for companies. \ In this study, consumers’ brainwaves which are related to concentration and emotion are extracted by wearing a portable and wireless Electroencephalography (EEG) device. The extracted EEG data are then trained by using perceptron learning algorithm (PLA) to make the judgments of concentration and emotion work well with each subject. They are then applied to the detection and analysis of consumer preference. Finally, the questionnaires are also performed and used as the reference on training process. They are integrated with brainwaves data to create one prediction model which can improve the accuracy significantly. The Partial Least Squares is used to compare the correlation between different factors in the model, to ensure the test can accurately meet consumers’ thoughts.

Share

COinS
 
Jan 4th, 12:00 AM Jan 7th, 12:00 AM

Emotion and Concentration Integrated System: Applied to the Detection and Analysis of Consumer Preference

Hilton Waikoloa Village, Hawaii

With the expansion of consumer market, the appearance becomes an important issue when consumers make decisions under the situation of similar qualities and contents. Accordingly, to attract consumers, companies cost and take much attention on product appearance. Compared to using questionnaires individually, obtaining humans’ thoughts directly from their brains can accurately grasp the actual preference of consumers, which can provide effective and precious decisions for companies. \ In this study, consumers’ brainwaves which are related to concentration and emotion are extracted by wearing a portable and wireless Electroencephalography (EEG) device. The extracted EEG data are then trained by using perceptron learning algorithm (PLA) to make the judgments of concentration and emotion work well with each subject. They are then applied to the detection and analysis of consumer preference. Finally, the questionnaires are also performed and used as the reference on training process. They are integrated with brainwaves data to create one prediction model which can improve the accuracy significantly. The Partial Least Squares is used to compare the correlation between different factors in the model, to ensure the test can accurately meet consumers’ thoughts.

https://aisel.aisnet.org/hicss-50/da/multi-criteria_decision_analysis/5