Abstract
Predictive business process monitoring deals with predicting a process’s future behavior or the value of process-related performance indicators based on process event data. A variety of prototypical predictive business process monitoring techniques has been proposed by researchers in order to help process participants performing business processes better. In practical settings, these techniques have a low predictive quality that is often close to random, so that predictive business process monitoring applications are rare in practice. The inclusion of process-context data has been discussed as a way to improve the predictive quality. Existing approaches have considered only structured data as context. In this paper, we argue that process-related unstructured documents are also a promising source for extracting process-context data. Accordingly, this research-in-progress paper outlines a design-science research process for creating a predictive business process monitoring technique that utilizes context data from process-related documents to predict a process instance’s next activity more accurately.
Recommended Citation
Weinzierl, Sven; Revoredo, Kate Cerqueira; and Matzner, Martin, (2019). "PREDICTIVE BUSINESS PROCESS MONITORINGWITH CONTEXT INFORMATION FROM DOCUMENTS". In Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm & Uppsala, Sweden, June 8-14, 2019. ISBN 978-1-7336325-0-8 Research-in-Progress Papers.
https://aisel.aisnet.org/ecis2019_rip/59