Abstract

There is an increasing interest in aligning information systems in a process-oriented way. As an alternative of the traditional imperative models which tend to be too rigid, processes may be specified in a declarative (e.g., constraint-based) way. Nonetheless, in general, offering operational support (e.g., generating possible execution traces) to declarative business process models entails more complexity when compared to imperative modeling alternatives. Such support becomes even more complex in many real scenarios where the management of complex temporal relations between the process activities is crucial (i.e., the temporal perspective should be managed). Despite the needs for enabling process flexibility and dealing with temporal constraints, most existing tools are unable to manage both. In a previous work, we then proposed TConDec-R, which is a constraint-based process modeling language which allows for the specification of temporal constraints. However, TConDec-R revealed a number of limitations that are overcome with the present work. More specifically, this paper significantly extends and improves our previous work by (1) defining TConDec-R process models based on high-level elements from the constraint programming paradigm, (2) introducing a constraint-based tool with a client/server architecture for providing operational support to TConDec-R process models, and (3) performing an empirical evaluation of the approach.

Recommended Citation

Jiménez Ramírez, A., Barba, I., & Del Valle, C. (2018). A Constraint-Based Approach for Managing Declarative Temporal Business Process Models. In B. Andersson, B. Johansson, S. Carlsson, C. Barry, M. Lang, H. Linger, & C. Schneider (Eds.), Designing Digitalization (ISD2018 Proceedings). Lund, Sweden: Lund University. ISBN: 978-91-7753-876-9. http://aisel.aisnet.org/isd2014/proceedings2018/ISDMethodologies/1.

Share

COinS
 

A Constraint-Based Approach for Managing Declarative Temporal Business Process Models

There is an increasing interest in aligning information systems in a process-oriented way. As an alternative of the traditional imperative models which tend to be too rigid, processes may be specified in a declarative (e.g., constraint-based) way. Nonetheless, in general, offering operational support (e.g., generating possible execution traces) to declarative business process models entails more complexity when compared to imperative modeling alternatives. Such support becomes even more complex in many real scenarios where the management of complex temporal relations between the process activities is crucial (i.e., the temporal perspective should be managed). Despite the needs for enabling process flexibility and dealing with temporal constraints, most existing tools are unable to manage both. In a previous work, we then proposed TConDec-R, which is a constraint-based process modeling language which allows for the specification of temporal constraints. However, TConDec-R revealed a number of limitations that are overcome with the present work. More specifically, this paper significantly extends and improves our previous work by (1) defining TConDec-R process models based on high-level elements from the constraint programming paradigm, (2) introducing a constraint-based tool with a client/server architecture for providing operational support to TConDec-R process models, and (3) performing an empirical evaluation of the approach.