Paper ID
1402
Paper Type
full
Description
Organizational learning (OL) is associated with experience and knowledge in an organization. Information Technology (IT) enables the creation, dissemination, and use of knowledge, and as such, plays an important role in an organization’s learning process. This role has inspired a large body of literature studying the link between OL and IT and the relation between IT and knowledge exploration and exploitation. The recent rise of Machine Learning (ML) with its Deep Learning (DL) capabilities has nevertheless brought about new ways of creating, retaining, and transferring knowledge. I argue that the learning occurring within the machine plays a role in the learning occurring within the organization, calling for revisiting OL in light of this disruptive IT. In this paper, I focus on three different ways in which the machine achieves its learning, namely supervised, unsupervised, and reinforcement learning, and advance propositions on how each impacts OL differently.
Recommended Citation
Afiouni, Rania, "Organizational Learning in the Rise of Machine Learning" (2019). ICIS 2019 Proceedings. 2.
https://aisel.aisnet.org/icis2019/business_models/business_models/2
Organizational Learning in the Rise of Machine Learning
Organizational learning (OL) is associated with experience and knowledge in an organization. Information Technology (IT) enables the creation, dissemination, and use of knowledge, and as such, plays an important role in an organization’s learning process. This role has inspired a large body of literature studying the link between OL and IT and the relation between IT and knowledge exploration and exploitation. The recent rise of Machine Learning (ML) with its Deep Learning (DL) capabilities has nevertheless brought about new ways of creating, retaining, and transferring knowledge. I argue that the learning occurring within the machine plays a role in the learning occurring within the organization, calling for revisiting OL in light of this disruptive IT. In this paper, I focus on three different ways in which the machine achieves its learning, namely supervised, unsupervised, and reinforcement learning, and advance propositions on how each impacts OL differently.