Location
Online
Event Website
https://hicss.hawaii.edu/
Start Date
3-1-2023 12:00 AM
End Date
7-1-2023 12:00 AM
Description
Procurement and marketing are the main boundary-spanning functions of an organization. Some studies highlight that procurement is less likely to benefit from artificial intelligence emphasizing its potential in other functions, i.e., in marketing. A case study in the automotive industry of the bundling problem utilizing the design science approach is conducted from the perspective of the buying organization contributing to theory and practice. We rely on information processing theory to create a practical tool that is augmenting the skills of expert buyers through a recommendation engine to make better decisions in a novel way to further save costs. Thereby, we are adding to the literature on spend analysis that has mainly been looking backward using historical data of purchasing orders and invoices to infer saving potentials in the future – our study supplements this approach with forward-looking planning data with inherent challenges of precision and information-richness.
Recommended Citation
Spreitzenbarth, Jan; Stuckenschmidt, Heiner; and Bode, Christoph, "Designing an AI-enabled Bundling Generator in an Automotive Case Study" (2023). Hawaii International Conference on System Sciences 2023 (HICSS-56). 2.
https://aisel.aisnet.org/hicss-56/in/digital_supply_chain/2
Designing an AI-enabled Bundling Generator in an Automotive Case Study
Online
Procurement and marketing are the main boundary-spanning functions of an organization. Some studies highlight that procurement is less likely to benefit from artificial intelligence emphasizing its potential in other functions, i.e., in marketing. A case study in the automotive industry of the bundling problem utilizing the design science approach is conducted from the perspective of the buying organization contributing to theory and practice. We rely on information processing theory to create a practical tool that is augmenting the skills of expert buyers through a recommendation engine to make better decisions in a novel way to further save costs. Thereby, we are adding to the literature on spend analysis that has mainly been looking backward using historical data of purchasing orders and invoices to infer saving potentials in the future – our study supplements this approach with forward-looking planning data with inherent challenges of precision and information-richness.
https://aisel.aisnet.org/hicss-56/in/digital_supply_chain/2