Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

3-1-2022 12:00 AM

End Date

7-1-2022 12:00 AM

Description

Health insurance claim fraud is a serious issue for the healthcare industry as it drives up costs and inefficiency. Therefore, claim fraud must be effectively detected to provide economical and high-quality healthcare. In practice, however, fraud detection is mainly performed by domain experts resulting in significant cost and resource consumption. This paper presents a novel Convolutional Neural Network-based fraud detection approach that was developed, implemented, and evaluated on Medicare Part B records. The model aids manual fraud detection by classifying potential types of fraud, which can then be specifically analyzed. Our model is the first of its kind for Medicare data, yields an AUC of 0.7 for selected fraud types and provides an applicable method for medical claim fraud detection.

Share

COinS
 
Jan 3rd, 12:00 AM Jan 7th, 12:00 AM

Show Me Your Claims and I'll Tell You Your Offenses: Machine Learning-Based Decision Support for Fraud Detection on Medical Claim Data

Online

Health insurance claim fraud is a serious issue for the healthcare industry as it drives up costs and inefficiency. Therefore, claim fraud must be effectively detected to provide economical and high-quality healthcare. In practice, however, fraud detection is mainly performed by domain experts resulting in significant cost and resource consumption. This paper presents a novel Convolutional Neural Network-based fraud detection approach that was developed, implemented, and evaluated on Medicare Part B records. The model aids manual fraud detection by classifying potential types of fraud, which can then be specifically analyzed. Our model is the first of its kind for Medicare data, yields an AUC of 0.7 for selected fraud types and provides an applicable method for medical claim fraud detection.

https://aisel.aisnet.org/hicss-55/hc/process/9