Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

4-1-2021 12:00 AM

End Date

9-1-2021 12:00 AM

Description

Alternating-Current Optimal Power Flow (AC-OPF) is framed as a NP-hard non-convex optimization problem that solves for the most economical dispatch of grid generation given the AC-network and device constraints. Although there are no standard methodologies for obtaining the global optimum for the problem, there is considerable interest from planning and operational engineers in finding a local optimum. Nonetheless, solving for the local optima of a large AC-OPF problem is challenging and time-intensive, as none of the leading non-linear optimization toolboxes can provide any timely guarantees of convergence. To provide robust local convergence for large complex systems, we introduce a homotopy-based approach that solves a sequence of primal-dual interior point problems. We utilize the physics of the grid to develop the proposed homotopy method and demonstrate the efficacy of this approach on U.S. Eastern Interconnection sized test networks.

Share

COinS
 
Jan 4th, 12:00 AM Jan 9th, 12:00 AM

Incremental Model Building Homotopy Approach for Solving Exact AC-Constrained Optimal Power Flow

Online

Alternating-Current Optimal Power Flow (AC-OPF) is framed as a NP-hard non-convex optimization problem that solves for the most economical dispatch of grid generation given the AC-network and device constraints. Although there are no standard methodologies for obtaining the global optimum for the problem, there is considerable interest from planning and operational engineers in finding a local optimum. Nonetheless, solving for the local optima of a large AC-OPF problem is challenging and time-intensive, as none of the leading non-linear optimization toolboxes can provide any timely guarantees of convergence. To provide robust local convergence for large complex systems, we introduce a homotopy-based approach that solves a sequence of primal-dual interior point problems. We utilize the physics of the grid to develop the proposed homotopy method and demonstrate the efficacy of this approach on U.S. Eastern Interconnection sized test networks.

https://aisel.aisnet.org/hicss-54/es/markets/4