Start Date

11-12-2016 12:00 AM

Description

Seeding as an emerging viral marketing strategy requires a better understanding on how various contextual factors that embedded in social networks affect peer influence and product diffusion. Realistic simulations for seeding need to incorporate empirical insights about the complexities (various moderators) and dynamics (temporal changes) of peer influence by analyzing real-world data. We analyze the impacts of peer influence moderators in a large-scale phone call network of 0.48 million customers with 364 million calls and 3.9 million video-on-demand purchases, to design empirical models and engineer data-driven simulations of product diffusion, as well as developing and evaluating seeding strategies. We intend to contribute to existing research by 1) enriching the theoretical and empirical understanding of peer influence moderators for stakeholders, 2) combining econometric models and analyses with data-driven simulations towards a complex system approach for devising and evaluating effective seeding strategies in different scenarios.

Share

COinS
 
Dec 11th, 12:00 AM

Understanding Moderators of Peer Influence for Engineering Viral Marketing Seeding Simulations and Strategies

Seeding as an emerging viral marketing strategy requires a better understanding on how various contextual factors that embedded in social networks affect peer influence and product diffusion. Realistic simulations for seeding need to incorporate empirical insights about the complexities (various moderators) and dynamics (temporal changes) of peer influence by analyzing real-world data. We analyze the impacts of peer influence moderators in a large-scale phone call network of 0.48 million customers with 364 million calls and 3.9 million video-on-demand purchases, to design empirical models and engineer data-driven simulations of product diffusion, as well as developing and evaluating seeding strategies. We intend to contribute to existing research by 1) enriching the theoretical and empirical understanding of peer influence moderators for stakeholders, 2) combining econometric models and analyses with data-driven simulations towards a complex system approach for devising and evaluating effective seeding strategies in different scenarios.