Start Date
12-13-2015
Description
Measuring the quality of health content in online health forums is a challenging task. The majority of the existing measures are based on evaluations of forum users and may not be reliable. We employed machine learning techniques, text mining methods, and Big Data platforms to construct four measures of textual quality to automatically determine the similarity of a given answer to professional answers. We then used them to assess the quality of 66,888 answers posted on Yahoo! Answers Health section. All four measures of textual quality revealed a higher quality for asker-selected best answers indicating that askers, to some extent, have a proper judgment to select the best answers. We also studied the presence of order effects in online health forums. Our results suggest that the textual quality of the first answer positively influences the mean textual quality of the subsequent answers and negatively influences the quantity of subsequent answers.
Recommended Citation
MOUSAVI, SEYEDREZA; Raghu, T. S.; and Frey, Keith, "Assessing Order Effects in Online Community-based Health Forums" (2015). ICIS 2015 Proceedings. 18.
https://aisel.aisnet.org/icis2015/proceedings/IShealth/18
Assessing Order Effects in Online Community-based Health Forums
Measuring the quality of health content in online health forums is a challenging task. The majority of the existing measures are based on evaluations of forum users and may not be reliable. We employed machine learning techniques, text mining methods, and Big Data platforms to construct four measures of textual quality to automatically determine the similarity of a given answer to professional answers. We then used them to assess the quality of 66,888 answers posted on Yahoo! Answers Health section. All four measures of textual quality revealed a higher quality for asker-selected best answers indicating that askers, to some extent, have a proper judgment to select the best answers. We also studied the presence of order effects in online health forums. Our results suggest that the textual quality of the first answer positively influences the mean textual quality of the subsequent answers and negatively influences the quantity of subsequent answers.