Abstract
This study attempts to discover and evaluate the predictive power of stock micro blog sentiment on future stock price directional movements. We construct a set of robust models based on sentiment analysis and data mining algorithms. Using 72,221 micro blog postings for 1909 stock tickers and 3874 distinct authors, our study reveals not only that stock micro blog sentiments do have predictive power for simple and market-adjusted returns respectively, but also that this predictive accuracy is consistent with the underreaction hypothesis observed in behavioral finance. We establish that stock micro blog with its succinctness, high volume and real-time features do have predictive power over future stock price movements. Furthermore, this study provides support for the model of irrational investor sentiment, recommends a supplementary investing approach using user-generated content and validates an instrument that may contribute to the monetization schemes for Virtual Investing Communities.
Recommended Citation
Oh, Chong and Sheng, Olivia, "Investigating Predictive Power of Stock Micro Blog Sentiment in Forecasting Future Stock Price Directional Movement" (2011). ICIS 2011 Proceedings. 17.
https://aisel.aisnet.org/icis2011/proceedings/knowledge/17
Investigating Predictive Power of Stock Micro Blog Sentiment in Forecasting Future Stock Price Directional Movement
This study attempts to discover and evaluate the predictive power of stock micro blog sentiment on future stock price directional movements. We construct a set of robust models based on sentiment analysis and data mining algorithms. Using 72,221 micro blog postings for 1909 stock tickers and 3874 distinct authors, our study reveals not only that stock micro blog sentiments do have predictive power for simple and market-adjusted returns respectively, but also that this predictive accuracy is consistent with the underreaction hypothesis observed in behavioral finance. We establish that stock micro blog with its succinctness, high volume and real-time features do have predictive power over future stock price movements. Furthermore, this study provides support for the model of irrational investor sentiment, recommends a supplementary investing approach using user-generated content and validates an instrument that may contribute to the monetization schemes for Virtual Investing Communities.