DOI
10.18151/7217532
Abstract
This design research builds on the idea to combine the strengths of traditional survey research with a more practice-oriented benchmarking approach. We present selfsurvey.org, an online survey platform that allows providing instant and respondent-specific feedback based on a scientifically grounded research model and a structural equation model-based prediction technique. Based on the partial least squares analysis results of a training dataset, selfsurvey employs a scoring algorithm to derive respondent-specific predicted scores, compares these with the observed scores, and provides visualized and text-based outputs. Our evaluation of selfsurvey in the context of a maturity benchmarking study provides an indication for the perceived usefulness of this artifact and its underlying scoring algorithm. We argue that this prediction-based approach, which goes far beyond the functionality of common univariate benchmarking tools, can be used for a wide range of survey studies and help increase the perceived relevance of academic survey studies to practice.
Recommended Citation
Winkler, Till J.; Sarstedt, Marko; Keil, Marian; and Rost, Paul, "selfsurvey.org: A Platform for Prediction-Based Benchmarking and Feedback-Enabled Survey Research" (2015). ECIS 2015 Completed Research Papers. Paper 204.
ISBN 978-3-00-050284-2
https://aisel.aisnet.org/ecis2015_cr/204