Social information services generate a large amount of data. Traditional social information service analysis techniques first require the large data to be stored, and afterwards processed and analyzed. However, as the size of the data grows the storing and processing cost increases. In this paper, we propose a ‘Meta-Information as a Service’ (MIaaS) framework that extracts the data from various social information services and transforms into useful information. The framework provides a new formal model to present the services required for social information service data analysis. An efficient data model to store and access the information. We also propose a new Quality of Service (QoS) model to capture the dynamic features of social information services. We use social information service based sentiment analysis as a motivating scenario. Experiments are conducted on real dataset. The preliminary results prove the feasibility of the proposed approach.