Paper Number
ICIS2025-1251
Paper Type
Complete
Abstract
Effective prompt engineering is critical to realizing the promised productivity gains of large language models (LLMs) in knowledge-intensive tasks. Yet, many users struggle to craft prompts that yield high-quality outputs, limiting the practical benefits of LLMs. Existing approaches, such as prompt handbooks or automated optimization pipelines, either require substantial effort, expert knowledge, or lack interactive guidance. To address this gap, we design and evaluate PromptPilot, an interactive prompting assistant grounded in four empirically derived design objectives for LLM-enhanced prompt engineering. We conducted a randomized controlled experiment with 80 participants completing three realistic, work-related writing tasks. Participants supported by PromptPilot achieved significantly higher performance (median: 78.3 vs. 61.7; p = .045, d = 0.56), and reported enhanced efficiency, ease-of-use, and autonomy during interaction. These findings empirically validate the effectiveness of our proposed design objectives, establishing LLM-enhanced prompt engineering as a viable technique for improving human-AI collaboration.
Recommended Citation
Gutheil, Niklas; Mayer, Valentin; Müller, Leopold; Römmelt, Jörg; and Kühl, Niklas, "PromptPilot: Improving Human-AI Collaboration Through LLM-Enhanced Prompt Engineering" (2025). ICIS 2025 Proceedings. 8.
https://aisel.aisnet.org/icis2025/hti/hti/8
PromptPilot: Improving Human-AI Collaboration Through LLM-Enhanced Prompt Engineering
Effective prompt engineering is critical to realizing the promised productivity gains of large language models (LLMs) in knowledge-intensive tasks. Yet, many users struggle to craft prompts that yield high-quality outputs, limiting the practical benefits of LLMs. Existing approaches, such as prompt handbooks or automated optimization pipelines, either require substantial effort, expert knowledge, or lack interactive guidance. To address this gap, we design and evaluate PromptPilot, an interactive prompting assistant grounded in four empirically derived design objectives for LLM-enhanced prompt engineering. We conducted a randomized controlled experiment with 80 participants completing three realistic, work-related writing tasks. Participants supported by PromptPilot achieved significantly higher performance (median: 78.3 vs. 61.7; p = .045, d = 0.56), and reported enhanced efficiency, ease-of-use, and autonomy during interaction. These findings empirically validate the effectiveness of our proposed design objectives, establishing LLM-enhanced prompt engineering as a viable technique for improving human-AI collaboration.
When commenting on articles, please be friendly, welcoming, respectful and abide by the AIS eLibrary Discussion Thread Code of Conduct posted here.
Comments
15-Interaction