Paper Number
2750
Paper Type
LitReview
Abstract
Explainable AI (XAI) seeks to transform black-box algorithmic processes into transparent ones, enhancing trust in AI applications across various sectors such as education. This review aims to examine the various definitions of XAI within the literature and explore the challenges of XAI in education. Our goal is to shed light on how XAI can contribute to enhancing the educational field. This systematic review, utilising the PRISMA method for rigorous and transparent research, identified 19 relevant studies. Our findings reveal 15 definitions and 62 challenges. These challenges are categorised using thematic analysis into seven groups: explainability, ethical, technical, human-computer interaction (HCI), trustworthiness, policy and guideline, and others, thereby deepening our understanding of the implications of XAI in education. Our analysis highlights the absence of standardised definitions for XAI, leading to confusion, especially because definitions concerning ethics, trustworthiness, technicalities, and explainability tend to overlap and vary.
Recommended Citation
Altukhi, Zaid M. and Pradhan, Sojen, "Systematic Literature Review: Explainable AI Definitions and Challenges in Education" (2024). ICIS 2024 Proceedings. 11.
https://aisel.aisnet.org/icis2024/lit_review/lit_review/11
Systematic Literature Review: Explainable AI Definitions and Challenges in Education
Explainable AI (XAI) seeks to transform black-box algorithmic processes into transparent ones, enhancing trust in AI applications across various sectors such as education. This review aims to examine the various definitions of XAI within the literature and explore the challenges of XAI in education. Our goal is to shed light on how XAI can contribute to enhancing the educational field. This systematic review, utilising the PRISMA method for rigorous and transparent research, identified 19 relevant studies. Our findings reveal 15 definitions and 62 challenges. These challenges are categorised using thematic analysis into seven groups: explainability, ethical, technical, human-computer interaction (HCI), trustworthiness, policy and guideline, and others, thereby deepening our understanding of the implications of XAI in education. Our analysis highlights the absence of standardised definitions for XAI, leading to confusion, especially because definitions concerning ethics, trustworthiness, technicalities, and explainability tend to overlap and vary.
When commenting on articles, please be friendly, welcoming, respectful and abide by the AIS eLibrary Discussion Thread Code of Conduct posted here.
Comments
25-LitReviews