Advances in Theories, Methods and Philosophy

Loading...

Media is loading
 

Paper Number

1975

Paper Type

short

Description

Like other disciplines, Information Systems is experiencing a growing volume of scholarly publications. This development exacerbates the threat of conceptual fragmentation. Previously, solutions based on repositories and databases were suggested to combat this issue, but the effort needed to build and maintain these solutions has impeded their widespread adoption. In response, the literature is exploring machine- learning-based approaches. We join this exploration proposing a computer vision approach to detecting conceptual models and extracting their constituents. The developed tool can serve as a foundation for automating the population of scientific databases describing theoretical models. We evaluate our deep learning approach against a sample of papers containing graphical theoretical models, and show that 81.5% of all constructs, items, and path coefficients can be correctly classified. This has the potential to significantly reduce manual efforts to populate scientific databases and can be an important step towards the augmentation of the work of theorists.

Comments

20-Methods

Share

COinS
 
Dec 12th, 12:00 AM

The Augmented Theorist - Toward Automated Knowledge Extraction from Conceptual Models

Like other disciplines, Information Systems is experiencing a growing volume of scholarly publications. This development exacerbates the threat of conceptual fragmentation. Previously, solutions based on repositories and databases were suggested to combat this issue, but the effort needed to build and maintain these solutions has impeded their widespread adoption. In response, the literature is exploring machine- learning-based approaches. We join this exploration proposing a computer vision approach to detecting conceptual models and extracting their constituents. The developed tool can serve as a foundation for automating the population of scientific databases describing theoretical models. We evaluate our deep learning approach against a sample of papers containing graphical theoretical models, and show that 81.5% of all constructs, items, and path coefficients can be correctly classified. This has the potential to significantly reduce manual efforts to populate scientific databases and can be an important step towards the augmentation of the work of theorists.

When commenting on articles, please be friendly, welcoming, respectful and abide by the AIS eLibrary Discussion Thread Code of Conduct posted here.