Paper Type
full
Description
Big data technology allows for managing data from a variety of sources, in large amounts, and at a higher velocity than before, impacting several traditional systems, including recommendation agents. Along with these improvements, there are concerns about trust and distrust in RA recommendations. Much prior work on trust has been done in IS, but only a few have examined trust and distrust in the context of big data and analytics. In this vein, the purpose of this study is to study the eight antecedents of trust and distrust in recommendation agents’ cues in the context of the Big Data ecosystem using an experiment. Our study contributes to the literature by integrating big data and recommendation agent IT artifacts, expanding trust and distrust theory in the context of a big data ecosystem, and incorporating the constructs of algorithm innovativeness and process transparency.
Recommended Citation
de Oliveira Cesar de Moraes, Heverton Roberto; Sanchez, Otavio; Brown, Susan; and Zhang, Bin, "Trust and Distrust in Big Data Recommendation Agents" (2019). ICIS 2019 Proceedings. 27.
https://aisel.aisnet.org/icis2019/data_science/data_science/27
Trust and Distrust in Big Data Recommendation Agents
Big data technology allows for managing data from a variety of sources, in large amounts, and at a higher velocity than before, impacting several traditional systems, including recommendation agents. Along with these improvements, there are concerns about trust and distrust in RA recommendations. Much prior work on trust has been done in IS, but only a few have examined trust and distrust in the context of big data and analytics. In this vein, the purpose of this study is to study the eight antecedents of trust and distrust in recommendation agents’ cues in the context of the Big Data ecosystem using an experiment. Our study contributes to the literature by integrating big data and recommendation agent IT artifacts, expanding trust and distrust theory in the context of a big data ecosystem, and incorporating the constructs of algorithm innovativeness and process transparency.