As the analytical capabilities and applications of e-business systems expand, providing real-time access to critical business performance indicators to improve the speed and effectiveness of business operations has become crucial. The monitoring of business activities requires focused, yet incremental enterprise application integration (EAI) efforts and balancing information requirements in real-time with historical perspectives. The decision-making process in traditional data warehouse environments is often delayed because data cannot be propagated from the source system to the data warehouse in a timely manner. In this paper, we present an architecture for a container-based ETL (extraction, transformation, loading) environment, which supports a continual near real-time data integration with the aim of decreasing the time it takes to make business decisions and to attain minimized latency between the cause and effect of a business decision. Instead of using vendor proprietary ETL solutions, we use an ETL container for managing ETLets (pronounced “et-lets”) for the ETL processing tasks. The architecture takes full advantage of existing J2EE (Java 2 Platform, Enterprise Edition) technology and enables the implementation of a distributed, scalable, near real-time ETL environment. We have fully implemented the proposed architecture. Furthermore, we compare the ETL container to alternative continuous data integration approaches.