Document Type



Most conventional data-mining algorithms identify the relationships among transactions using binary values and find rules at a single concept level. Transactions with quantitative values and items with taxonomic relations are, however, commonly seen in real-world applications. Besides, the taxonomic structures may also be represented in a fuzzy way. This paper thus proposes a fuzzy multiple-level mining algorithm for extracting fuzzy association rules under given fuzzy taxonomic structures. The proposed algorithm adopts a top-down progressively deepening approach to finding large itemsets. It integrates fuzzy-set concepts, data-mining technologies and multiple-level fuzzy taxonomy to find fuzzy association rules from given transaction data sets. Each item uses only the linguistic term with the maximum cardinality in later mining processes, thus making the number of fuzzy regions to be processed the same as the number of the original items. The algorithm therefore focuses on the most important linguistic terms for reduced time complexity