Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

4-1-2021 12:00 AM

End Date

9-1-2021 12:00 AM

Description

Patient-centered health care information systems (PHSs) on peer-to-peer (P2P) networks promise decentralization benefits. P2P PHSs, such as decentralized personal health records or interoperable Covid-19 proximity trackers, can enhance data sovereignty and resilience to single points of failure, but the openness of P2P networks introduces new security issues. We propose a novel, simple, and secure mutual authentication protocol that supports offline access, leverages independent and stateless encryption services, and enables patients and medical professionals to establish secure connections when using P2P PHSs. Our protocol includes a virtual smart card (software-based) feature to ease integration of authentication features of emerging national health-IT infrastructures. The security evaluation shows that our protocol resists most online and offline threats while exhibiting performance comparable to traditional, albeit less secure, password-based authentication methods. Our protocol serves as foundation for the design and implementation of P2P PHSs that will make use of P2P PHSs more secure and trustworthy.

Share

COinS
 
Jan 4th, 12:00 AM Jan 9th, 12:00 AM

Online at Will: A Novel Protocol for Mutual Authentication in Peer-to-Peer Networks for Patient-Centered Health Care Information Systems

Online

Patient-centered health care information systems (PHSs) on peer-to-peer (P2P) networks promise decentralization benefits. P2P PHSs, such as decentralized personal health records or interoperable Covid-19 proximity trackers, can enhance data sovereignty and resilience to single points of failure, but the openness of P2P networks introduces new security issues. We propose a novel, simple, and secure mutual authentication protocol that supports offline access, leverages independent and stateless encryption services, and enables patients and medical professionals to establish secure connections when using P2P PHSs. Our protocol includes a virtual smart card (software-based) feature to ease integration of authentication features of emerging national health-IT infrastructures. The security evaluation shows that our protocol resists most online and offline threats while exhibiting performance comparable to traditional, albeit less secure, password-based authentication methods. Our protocol serves as foundation for the design and implementation of P2P PHSs that will make use of P2P PHSs more secure and trustworthy.

https://aisel.aisnet.org/hicss-54/hc/wellness_management/7