Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

4-1-2021 12:00 AM

End Date

9-1-2021 12:00 AM

Description

Online learning has been expanding for some time but the forced move to it due to the outbreak of COVID-19 has created new issues. This study set out to investigate the impact mechanism of online learning user satisfaction from the perspective of cognitive load in the era of COVID-19 and explore ways to optimize cognitive load in teaching practice. Semi-structured interviews were conducted for the empirical analysis. The coding process of the interviews yielded several antecedents of cognitive load in the online learning process. We also proposed a theoretical model based on the literature review and data analysis. Findings of the qualitative analysis indicate that the antecedents of cognitive load are multi-dimensional and the user's satisfaction with the online learning platform mainly consists of the expected confirmation of the information system and the perceived usefulness. These findings can help us think backward about optimizing user satisfaction with online learning in the context of COVID-19 breakout.

COinS
 
Jan 4th, 12:00 AM Jan 9th, 12:00 AM

Investigating user satisfaction of university online learning courses during the COVID-19 epidemic period

Online

Online learning has been expanding for some time but the forced move to it due to the outbreak of COVID-19 has created new issues. This study set out to investigate the impact mechanism of online learning user satisfaction from the perspective of cognitive load in the era of COVID-19 and explore ways to optimize cognitive load in teaching practice. Semi-structured interviews were conducted for the empirical analysis. The coding process of the interviews yielded several antecedents of cognitive load in the online learning process. We also proposed a theoretical model based on the literature review and data analysis. Findings of the qualitative analysis indicate that the antecedents of cognitive load are multi-dimensional and the user's satisfaction with the online learning platform mainly consists of the expected confirmation of the information system and the perceived usefulness. These findings can help us think backward about optimizing user satisfaction with online learning in the context of COVID-19 breakout.

https://aisel.aisnet.org/hicss-54/da/decision_support_for_smart_cities/3