Abstract

Customer movements in large tourism industries (such as public transport systems, attraction parks or ski resorts) can be understood as business processes. Their processes describe the flow of persons through the networked systems, while Information Systems log the different steps. The prediction of how large numbers of customers will behave in the near future is a complex and yet unsolved challenge. However, the possible business benefits of predictive analytics in the tourism industry are manifold. We propose to approach this task with the yet unexploited appli-cation of predictive process mining. In a prototypical use case, we work together with two major European ski resorts. We implement a predictive process mining algorithm towards the goal of predicting near future lift arrivals of skiers within the ski resort in real-time. Furthermore, we present the results of our prototypical implementation and draw conclusions for future research in the area.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.