Grant Proposal Writing in Information Systems

Kalle J. Lyytinen
Case Western Reserve University, kalle@po.cwru.edu

Jane Prey
Microsoft Research, jprey@microsoft.com

Matt Germonprez
University of Wisconsin-Eau Claire, germonr@uwec.edu

Balasubramaniam Ramesh
Georgia State University, bramesh@gsu.edu

Dong-Gil Ko
Indiana University, dgko@indiana.edu

Follow this and additional works at: https://aisel.aisnet.org/cais

Recommended Citation
DOI: 10.17705/1CAIS.01622
Available at: https://aisel.aisnet.org/cais/vol16/iss1/22

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
ABSTRACT

This paper provides an overview of grant proposal writing in Information Systems. In particular, we focus on where to find calls for grant proposals, how to write proposals, the proposal review process, and what to expect when a proposal is funded. Guidelines for writing proposals include writers becoming involved in the grant review process to gain a better understanding of how the granting process works and avoiding such pitfalls as writing proposals to increase salary, recognition, or university standing. The proposal writing process is a challenging task and this paper, based on a grant writing workshop at AMCIS 2005, provides support for navigating the process.

Keywords: grant proposal writing, information systems grants

I. INTRODUCTION

Proposal writing is a difficult task in any field. Information Systems research is no different. Major concerns for funding organizations include

- the allocation of a generally limited set of funds to support high quality research,
the definition of the field of Information Systems and
the definition of which type of IS research is worthy of publishing.

Successful proposals are driven by true research needs. Researchers should be wary of falling in the trap of writing proposals for the need of personal financial gain or school gain, political gains, or as credit towards tenure and promotion. These goals can be achieved in easier ways, although all of them can be secondary outcomes of successful proposal writing and project execution.

In this paper, based on a workshop offered at AMCIS 2006 in Omaha, Nebraska in August 2006, we explore grant proposal writing primarily from the viewpoint of Information System scholars. We did not examine all sources of grants (e.g. nonprofit foundations, university specific, the Society for Information Management), all types of grants (e.g. pedagogical, equipment, travel, summer support), or the assessment of the potential competition in applying for grants. Instead, we looked specifically at the roles that both industry and government agencies play in grant proposal writing in support of individuals and their research, the process and outcomes of these funded grants, and techniques and pitfalls in the proposal writing process.

II. WRITING GRANT PROPOSALS

Grant proposals go through a competitive selection process and the acceptance rates can be as low as 10% in Information-Systems-related programs. Though there is no silver bullet for writing a good grant proposal, in this paper we provide general rules that can guide a researcher in improving their chances of grant proposal acceptance and funding. Many of these guidelines are a replication/reiteration of tips and tricks already know to successful proposal writers [Porter, 2003].

Information systems, whether in business schools or elsewhere in the University or college, lie in a gray area of research funding - both for federal grants or private foundation grants.

1. Funding agencies are often hesitant about treating proposals from business schools in a “fair” way based on the perceptions that business schools are sufficiently rich that they can fund their own research.

2. Business schools do not have a strong history in obtaining federal government funding for research.

3. Information systems itself is viewed as a domain which lies in the intersection among the engineering sciences, the pure sciences, and the social sciences. Many times funding agencies are not willing to fund “interdisciplinary research.” On this last issue, some recent National Science Foundation (NSF) research programs (e.g., The Information Technology Research Program) improved the situation significantly.

To overcome these three concerns, applicants should focus their proposal on tools or ideas that are generalizable beyond business schools and IS context and demonstrate clearly the return on investment that a funding agency will obtain. For example, suggest that your research on computing will involve the business school or businesses only as a starting point or an illustrative case.

Agencies fund high risk research. Therefore, the proposed topics should show significant changes and long term impact to the Information Systems field. As a proposal writer, you must determine if the topic is a new idea, or if it is an add-on to existing idea. Most funding programs clearly identify whether they target revolutionary or evolutionary research ideas. Unless explicitly identified, funding agencies may consider both types of proposals because both can provide key contributions to the field. However, express this difference clearly in the proposal and do not try to do everything in one proposal. In either case, provide strong literature coverage.
Show your own collaboration at the national and international level, because this information improves your ability to articulate the research idea in the context of ongoing research. It also demonstrates your competency in the research domain and the context of study.

In a proposal, formulate clearly

- the research questions and goals,
- the methodology, and
- offer an execution plan that identifies the project risks and limitations.

Write concretely about the deliverables you intend to produce and create trust that you can deliver what you propose. To do so, provide details on research infrastructure and administrative support.

The research plan should include benchmarks and evaluation criteria. Provide a timeline on how to evaluate the project. If necessary, consider including collaborators with expertise needed for successful execution. For example, collaborators may conduct a comprehensive evaluation of the outcomes of the research project.

Budgets should directly reflect your plan of work and should be realistic. It is often difficult to negotiate the amount of funding afterwards, though government agencies sometimes have room for negotiation in certain instances. In most cases, you may expect to cut 20-30% of your proposed budget with a possible revision in the scope of the project. Remember that budgets include indirect costs charged by universities of about 40% to 50% of the grant money when the proposal is submitted through the university. Industry sponsors are often unwilling to support indirect costs and may choose to provide the funding as a gift.

Make sure you clear up intellectual property issues, human subject issues, non-disclosure agreements, and letters of participation from organizations that you intend to work with prior to submission. If needed for your research, particularly if you work with human subjects, obtain approval from your Institutional Review Board (IRB).

The research idea must be well articulated and succinctly expressed in the proposal. Peer feedback is a valuable tool in achieving this goal. Revise the proposal several times based on the feedback prior to submitting to a funding agency. When revising a proposal, always follow the formatting guidelines. Failure to do so can be grounds for rejection without review. Some researchers use the services of professional writers and members of a university grant office to help with grant proposal preparation.

Begin the proposal early. Do not expect that a proposal started a week or two before the deadline will be competitive. Since a large number of submissions are made close to the deadline, there is a possibility of getting locked out of online submission systems. Typically, you can not appeal for deadline extensions. In addition, when doing a proposal submission, you need to go through the grant office at your university. This procedure can sometimes take three weeks to get your final proposal through the university and to the granting agency. Find out whether your grants office is fast or slow. Remove that time from your available time for preparation. Make sure you submit at least drafts of the proposal early with online submissions; you can replace them with revised versions before they are officially submitted.

III. GRANT PROPOSAL REVIEW PROCESS

Reviews performed for government agencies are typically compensated (e.g., National Science Foundation); however, industry reviews are performed as a service (e.g., Microsoft). The background of the reviewers and their expertise in your area of research vary considerably. The review process is most often single blind. In some cases, reviews are compiled by a program director and decisions are made by that director. In other cases, review panels are convened to discuss and evaluate proposals. In this process, proposals move up or down in their potential for...
being funded and the amount to be funded. In rare circumstances, typically for very large proposals, the funding agencies perform site visits.

In the proposal, you roughly have the first one or two pages to get the reviewers attention. Important aspects of the proposals discussed beyond the early pages of the proposal are less likely to receive the same level of attention because the reader may lose interest, thereby decreasing your chances for funding. From government agencies you will often see the reviews. In industry, you will rarely see the reviews due to litigation concerns. Make sure that you keep in touch with the program manager to learn about the proposal strengths and weaknesses that were not articulated in a review.

IV. GRANT PROPOSAL OUTCOMES

If you receive funding often requires you to produce research output in the form of conference publications and other publicity. These presentations require demonstrations, progress reports, and discussions of future work. Conference proceedings provide a quick outlet for the results, but you need to make sure that the quality of the proceedings is acceptable. Make sure also to engage industry whenever your proposal entities and allows you to do it. Some agencies (like DARPA) require on-site presentations of the progress of your work. Some agencies also expect that you share the dataset obtained through a funded grant. If you are unwilling to share the data, you will not likely receive funding.

If you do not receive the grant, revise and resubmit the proposal. A second round proposal will be more likely to succeed. In addition, if the proposal is rejected consider using relevant parts of it into an academic paper to strengthen your track record.

V. FINDING GRANTS

Many government agency, foundations, and private companies dedicate web sites to listing all available grants (e.g. the ACM [1999]). Appendix I lists additional online resources for available grants. You can also contact agency program directors directly. NSF offers an e-mail service which provides reminders for all forthcoming funding opportunities. Government agencies such as NSF issue requests for proposals three months prior to grant proposal due date. Monthly email newsletters, alternative industry sources, and philanthropy web sites of major corporations list opportunities for funding. To comb the vast listings of available grants, consider funding a student or employee as a resource for the entire department or college.

Information on approved grants is also often available online from government agencies. The fastest way to obtain a copy of the proposal is often to contact the Principal Investigator directly or through the funding agency. Universities may provide a repository of funded proposals.

VI. BECOMING FAMILIAR WITH THE PROCESS

Volunteering to be on a reviewer of proposals is a good way to gain first-hand experience on how the system works. You can quickly learn what good and bad proposals look like, and make contacts and a good impression inside of the funding agencies.

VII. CONCLUSIONS

When writing a proposal, follow the call for proposals clearly. Do not retrofit your research to a grant proposal call; write a proposal because your research truly needs funding to succeed. Establish a track record in the field through research collaboration. These collaborators oftentimes can act as mentors to help you write grant proposals [Banta et al., 2004]. Also make sure that you have the infrastructure in place to handle the grant if it is awarded. Keep the lines of communication open to all those involved including mentors, reviewers, and project directors.

Grant Proposal Writing in Information Systems by K. Lyttinen, J. Prey, B. G. Ramesh, M. Germonprez, and D-G. Ko
Instead of working on isolated research projects, plan a research program in which different, but related streams of research may be lead to grant proposals. This strategy will help leverage the significant investment that you need to be successful in this endeavor.

REFERENCES

Association for Computing Machinery. (1999). “Grants Information on acm.org”, *Communications of the ACM* 42(9), pp. 4,

APPENDIX I. ONLINE GRANT RESOURCES

<table>
<thead>
<tr>
<th>Organization</th>
<th>Web Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Science Foundation</td>
<td>http://www.nsf.gov/funding/</td>
</tr>
<tr>
<td>National Institutes of Health</td>
<td>http://grants1.nih.gov/grants/</td>
</tr>
<tr>
<td>United States Federal Grants</td>
<td>http://www.grants.gov/</td>
</tr>
<tr>
<td>US Office of Naval Research</td>
<td>http://www.onr.navy.mil/02/</td>
</tr>
<tr>
<td>Accenture</td>
<td>http://www.accenture.com/xd/xd.asp?it=enweb&xd=ideas/ideas_home.xml</td>
</tr>
<tr>
<td>Microsoft</td>
<td>http://research.microsoft.com/ur/us/</td>
</tr>
</tbody>
</table>

ABOUT THE AUTHORS

Kalle Lyytinen is the Iris S. Wolstein Professor of Information Systems at the Weatherhead School of Management at Case Western Reserve University and an adjunct professor at the University of Jyvaskyla. He is well known for his research in computer-supported system design and modeling, system failures and risk assessment, computer-supported cooperative work and the diffusion of complex technologies. He is currently researching the development and management of digital services and the evolution of virtual communities.

Jane Prey is an Academic Innovation Manager at Microsoft Research. She spent 11 years as a faculty member in the Computer Science Department at the University of Virginia. In addition, for 2 years she was the Program Director of the Division of Undergraduate Education at the National Science Foundation.

Balasubramaniam Ramesh is Professor of Computer Information Systems at Georgia State University. His research focuses on supporting complex organizational processes such as requirements management and traceability, business process management, and new product development.
Matt Germonprez is Assistant Professor in the Management Information Systems department at the University of Wisconsin – Eau Claire. He teaches and conducts research on web-based technologies including interface design, user modification of technology, and mobile computing.

Dong-Gil Ko is assistant professor of Information Systems in the Kelley School of Business at Indiana University. He holds a Ph.D. in management information systems from the Katz Graduate School of Business, University of Pittsburgh. His current research focuses on the transfer of knowledge, the exercise of control, and the use of systems for improving the management, performance, and impact of IT-related projects.

Copyright © 2005 by the Association for Information Systems. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for components of this work owned by others than the Association for Information Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-mail from ais@aisnet.org.
AIS SENIOR EDITORIAL BOARD

Jane Webster
Vice President Publications
Queen's University

Paul Gray
Editor, CAIS
Claremont Graduate University

Kalle Lyytinen
Editor, JAIS
Case Western Reserve University

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Reagan Ramsower
Editor, ISWorld Net
Baylor University

CAIS ADVISORY BOARD

Gordon Davis
University of Minnesota

Ken Kraemer
Univ. of Calif. at Irvine

M.Lynne Markus
Bentley College

Richard Mason
Southern Methodist Univ.

Jay Nunamaker
University of Arizona

Henk Sol
Delft University

Ralph Sprague
University of Hawaii

Hugh J. Watson
University of Georgia

CAIS SENIOR EDITORS

Steve Alfer
U. of San Francisco

Chris Holland
Manchester Bus. School

Jaak Jurison
Fordham University

Jerry Luftman
Stevens Inst.of Technology

CAIS EDITORIAL BOARD

Tung Bui
University of Hawaii

Fred Davis
U.ofArkansas, Fayetteville

Candace Deans
University of Richmond

Donna Dufner
U.of Nebraska -Omaha

Omar El Sawy
Univ. of Southern Calif.

Ali Farhoomand
University of Hong Kong

Jane Fedorowicz
Bentley College

Brent Gallupe
Queens University

Robert L. Glass
Computing Trends

Sy Goodman
Ga. Inst. of Technology

Joze Gricar
University of Maribor

Ake Gronlund
University of Umea,

Ruth Guthrie
California State Univ.

Alan Hevner
Univ. of South Florida

Juhani Livari
Univ. of Oulu

Claudia Loebbecke
University of Cologne

Michel Kalika
U. of Paris Dauphine

Munir Mandviwalla
Temple University

Sal March
Vanderbilt University

Don McCubbrey
University of Denver

Michael Myers
University of Auckland

Seev Neumann
Tel Aviv University

Dan Power
University of No. Iowa

Ram Ramesh
SUNY-Buffalo

Kelley Rainer
Auburn University

Paul Tallon
Boston College

Thompson Teo
Natl. U. of Singapore

Doug Vogel
City Univ. of Hong Kong

Rolf Wigand
U. of Arkansas,LittleRock

Upkar Varshney
Georgia State Univ.

Vance Wilson
U.ofWisconsin,Milwaukee

Peter Wolcott
U. of Nebraska-Omaha

Ping Zhang
Syracuse University

DEPARTMENTS

Global Diffusion of the Internet.
Editors: Peter Wolcott and Sy Goodman

Information Technology and Systems.
Editors: Alan Hevner and Sal March

Papers in French
Editor: Michel Kalika

Information Systems and Healthcare
Editor: Vance Wilson

ADMINISTRATIVE PERSONNEL

Eph McLean
AIS, Executive Director
Georgia State University

Reagan Ramsower
Publisher, CAIS
Baylor University