2005

Do Security Vulnerability Announcements Impact Software Vendors - An Event Study Analysis

Rahul Telang
Carnegie Mellon University, rtelang@andrew.cmu.edu

Sunil Wattal
Carnegie Mellon University, swattal@andrew.cmu.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2005

Recommended Citation
http://aisel.aisnet.org/amcis2005/458
Do Security Vulnerability Announcements Impact Software Vendors – an Event Study Analysis

Rahul Telang
Carnegie Mellon University
rtelang@andrew.cmu.edu

Sunil Wattal
Carnegie Mellon University
swattal@andrew.cmu.edu

ABSTRACT

In this paper, we use the event study methodology to examine the role that financial markets play in determining the impact of vulnerability disclosures on software vendors. We collect data from leading national newspapers and industry sources by searching for reports on published software vulnerabilities. Our main result is that vulnerability disclosures do lead to a negative and significant change in market value for a software vendor. On average, a vendor loses around 0.6% value in stock price when a vulnerability is reported. To provide further insight, we use the information content of the disclosure announcement to classify vulnerabilities into various types. This is the first study to measure vendors’ incentive to develop secure software and also provides many interesting implications for software vendors as well as policy makers.

KEYWORDS

INTRODUCTION

The Organization of Internet Safety (OIS, www.oisafety.org) defines security vulnerability as: “security vulnerability is a flaw within a software system that can cause it to work contrary to its documented design and can be exploited to cause the system to violate its documented security policy”. In this paper, we use the terms ‘software vulnerability’, ‘security vulnerability’, ‘bug’, ‘flaw’ interchangeably. Software vulnerabilities have widespread impact and can potentially cause billions of dollars in downtime and disruptions to firms (In this paper, the word ‘firms’ refers to companies which use software products; ‘vendors’ refers to companies which develop software products). A study by NIST, 2002 estimates the cost of faulty software at $60 billion per year. Incidents like the Code Red virus in 2001 (damages - $2.1 billion) occurred when hackers exploited software flaws. The Gartner Group estimates that the system downtime caused by security vulnerabilities would triple from 5% of the total downtime in 2004 to 15% of the total downtime in 2008. An example of vulnerability announcements reported in popular press is:

- WSJ(02/11/2004) “Microsoft Corp. warned customers about serious security problems with its Windows software that let hackers quietly break into their computers to steal files, delete data or eavesdrop on sensitive information……..”

Inspite of all these concerns about software vulnerabilities, not much has been mentioned in literature about software vendors’ incentives to invest in defect-free secure software. Literature on software risks fails to include any measure for security related risks(Wallace, Keil and Rai, 2004). In traditional literature, software quality is measured in terms of reliability and integrity of the source code(Harter, Krishnan and Slaughter, 2000)–which essentially tests software against specified streams of input from users. In today’s internet age, software designers must not only think of users, but also malicious adversaries. Quality models such as ISO9126 fail to include computer security. Therefore software which has been certified as high quality, based on existing definitions of software quality, can have many security flaws. Researchers in computer science are working on better integration of the two disciplines of software quality and software security while designing software(McGraw 2004). So far, there has only been anecdotal evidence that software vulnerabilities are causing vendors to lose market value. E.g., the Wall Street Journal(11/09/2004) reported that Microsoft’s Internet Explorer(IE) is losing market share in the web browser market to competitors like Mozilla’s Firefox due to numerous flaws discovered in IE.

Prior literature (Jarrell and Peltzman 1985, Davidson and Worrell 1992) predicts that product defect announcements are associated with loss in market value of a firm. However the results of these prior studies cannot be directly applied to product defects in the software industry because of the following characteristics of software products: One, software products generally come with a click-wrap agreement (EULA – End User License Agreement) which limits the vendors’ liability. Two, the general philosophy held by software vendors, software customers and the US courts is that software is a uniquely complex product that will probably have some defects (Cusumano 2004). Three, popular software like those from Microsoft are constantly subject to malicious and non-malicious attacks and have a greater number of flaws reported in them as compared to software by Apple, where the user base is comparatively smaller. Therefore, the presence of vulnerabilities may not always signal a lower quality product; it may infact signal superiority over competition. E.g. John Thomson, CEO of Symantec, predicts that the flaws in Linux will increase as the installed base increases. Motivated by these observations, in this research we try to quantify the losses that software vendors bear when a vulnerability is disclosed in their product. The research questions that we seek to answer are:

1. What is the impact of vulnerability disclosures on the market value of a software vendor?
2. How do the characteristics of the vulnerability impact this change in market value?

Most prior research (Gordon and Loeb 2002, Gal-Or and Ghose, 2003) discusses the economics of information security investments from a customer perspective, rather than from a software vendor perspective. Prior event study analyses on information security have focused on the change in market value of firms whose systems are breached (Cavusoglu, Mishra and Raghunathan 2004). Disclosure of vulnerabilities has been one contentious area and some recent academic work is examining this issue more formally. Arora, Telang and Xu (2004) study the optimal timing of vulnerability disclosure and show that disclosure can force vendors to release patches quickly. Arora, Caulkins and Telang (2003) find that larger software vendors find it optimal to rush product into market and then invest in post launch patching. Schechter (2004) presents a quantitative approach to measuring how software vulnerabilities impact system security.

However none of these studies measures the impact of disclosure on vendor’s market value or profitability. While one major goal of disclosure is to eventually force vendors to develop secure software, empirically, there is no evidence that suggests that disclosure indeed creates such incentives. Our paper provides an understanding of whether such disclosures create incentives for the vendors to produce secure software in the first place.

Our methodology follows closely from prior event study analysis (Campbell, Andrew and MacKinley 1997). We collect data on 146 vulnerability disclosure announcement over the period of over 5 years for 18 publicly traded vendors. Our results confirm that vulnerability disclosure adversely and significantly affects the stock performance of a software vendor. We show that, on average, a software vendor loses around 0.63% of market value on the day of the vulnerability announcement.

The main contribution of this research is that this is one of the first studies, to our knowledge, that has tried to measure the impact of vulnerabilities on software vendors. Thus, we extend prior literature on product defects and confirm that software vendors too suffer a loss in market value when a flaw is discovered in their product. This is inspite of the fact that software vulnerabilities are prevalent among software of almost all major vendors and that vendors face no legal liability if clients suffer losses due to the software flaw. This has important implications in terms of vendors making investment in software quality as well as policy and legal issues which govern vulnerability disclosures.

HYPOTHESES

Vulnerability disclosure signals an increase in product related costs due to the time and effort that the vendor spends in developing a patch or a fix for the flaw. Banker and Slaughter (1998) find that unplanned and critical maintenance activities increase software maintenance costs. Security fixes may cost about $2000-$9000 when done during testing phase. However, they may cost more than 4-8 times when fixed after the application has been shipped. Westland (2003) suggests that software defects are harder and costlier to fix if discovered later in the software development cycle (e.g. when the product has been shipped to the customer). Vulnerability also signals a potential loss in future cash flows for a software vendor owing to customer dissatisfaction because customers suffer a loss if their systems get breached. Security breach announcements by the user organizations have been known to have a negative impact on the share value for firms (Cavusoglu et al, 2004). Thus, the cost to the vendor can be written as

2 http://www.sbq.com/sbq/rosi/shq_rosi_software_engineering.pdf
Cost of vulnerability disclosure to vendor = Cost of patching the vulnerability + λ*(Cost to the users of the software due to exploitation, and/or cost to patch the system)

Here, λ is the user loss that is internalized by the vendor due to lost sale or reputation loss (or liability if imposed in future). Clearly, λ depends on how willing users are to “punish” the vendor, how competitive the market is and the characteristics of vulnerability (Arora, Telang and Xu 2004). For example, this is a typical customer reaction:

"We are extremely concerned by the high amount of vulnerabilities and patches from Microsoft. This goes against the credibility of what they have been saying."

Michael Kamens, global security director at Thermo Electron Corp.

Therefore, we hypothesize that

H1: A software vendor suffers a loss in market value when a security related vulnerability is announced in its products.

Our second hypothesis pertains to whether the software vendor releases a patch for the product at the time of the vulnerability announcement. Presence of the patch is also likely to reduce customers’ loss if they apply the patch. Therefore our second hypothesis is:

H2: Loss in market value of a stock is greater for vulnerabilities where the software vendor does not release a patch at the time of the vulnerability disclosure.

Campbell, Gordon, Loeb and Zhou (2003) further show that the loss in market value for firms is more for confidentiality related breaches than for non-confidentiality related breaches. Confidentiality related breaches involve attacks where an intruder can gain access into a system and can steal sensitive information. Non-confidentiality related breaches include attacks where the most likely scenario is a disruption and/or a downtime. Therefore we would expect that the vendor loses more market value if the vulnerability in its software causes a confidentiality related breach. Hence next hypothesis is:

H3: Loss in market value is greater for a vulnerability which can potentially cause a breach in confidentiality as compared to non-confidentiality related breaches.

The impact of a product flaw on a vendor also depends on how severe the flaw is (Davidson et al 1992). Therefore, we hypothesize that

H4: The loss in market value of a software vendor is greater if the announced vulnerability has a higher severity.

The source of disclosure also impacts the market value. For example, disclosure by vendors would signal their commitment to providing secure software. Therefore, we hypothesize that

H5: The loss in market value for a software vendor is lower in case the security vulnerability is discovered by the vendor rather than rivals or third party security firms.

DATA DESCRIPTION & METHODOLOGY

Vulnerability Disclosure Process

The typical process of vulnerability disclosure (Figure 1) begins with the vulnerability discovery. There are various sources for vulnerability discovery. Some vulnerabilities are discovered by amateur researchers or by independent security analysts (ISA). If the ISA chooses to follow ‘limited disclosure’, it reports the vulnerability to the concerned vendor or to an independent body like CERT who disclose the vulnerability to public (generally after the fix has been made available). On the other hand, if the ISA chooses to follow ‘full disclosure’ or if a hacker discovers the vulnerability, the vulnerability may get announced directly to public. Forums such as Bugtraq allow for full disclosure of vulnerability information. In any case, after the vulnerability has been announced, investors might re-evaluate their projections on the software vendors’ profitability based on the vulnerability characteristics. Consequentially, the stock price of the vendor might show an abnormal return due to the vulnerability announcement.

3 http://www.computerworld.com/softwaretopics/os/windows/story/0,10801,92349,00.html
Data

Our data comes from the vulnerability disclosures in popular press as well as from the advisory reports in CERT. We include articles published by news networks like Businesswire, Newswire and daily articles in popular press like WSJ, NY Times, Washington Post and LA Times. We used the following terms in our search: ‘vulnerability AND disclosure’, ‘software AND vulnerability’, ‘software AND flaw’, ‘virus AND vulnerability’ & ‘vulnerability AND patch’. In accordance with prior event study literature(Hendricks & Singhal 1996), we exclude those announcements where the vendor disclosed any other confounding news such as a stock split or merger within a two day window around the day of the vulnerability announcement. Our dataset contains 146 vulnerability announcements pertaining to around 18 firms in the time period January 1999–May 2004. The descriptive statistics are as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of firms</td>
<td>18</td>
</tr>
<tr>
<td>Number of announcements</td>
<td>146</td>
</tr>
<tr>
<td>%age of vulnerabilities announcements in popular press</td>
<td>35</td>
</tr>
<tr>
<td>%age of vulnerabilities for which vendor has patch available at the time of the announcement.</td>
<td>24</td>
</tr>
<tr>
<td>%age of vulnerabilities discovered by the vendor itself</td>
<td>36</td>
</tr>
<tr>
<td>% of vulnerabilities that could potentially result in a security breach related to confidentiality</td>
<td>39</td>
</tr>
</tbody>
</table>

Table 1: Descriptive Statistics
Methodology

We use the standard event study methodology for this analysis. An event study assumes that returns on a stock are significantly impacted by an event of interest (in our case, the event of interest is the vulnerability disclosure announcement). The period of interest for which we observe the event is known as the event window. In practice, researchers use different values of the event window. In our study, we define a 1-day event window (day of the announcement or day ‘0’), since we can exactly determine the date of the event. A shorter event window permits a better estimation of the effects of information on stock prices since it reduces the possibility of other confounding factors not related to the announcement. It also increases the power of the statistical tests.

There are three main methods followed in the event study methodology:

1. The Market Model

In the market model, the abnormal returns are estimated as follows:

\[AR_{it} = R_{it} - \alpha - \beta \cdot R_{mt} \]

where \(i \) denotes the event (\(i=1,2,\ldots,N \)) and \(t \) denotes the day of the event. \(AR_{it} \) denotes the abnormal return of event \(i \) at time \(t \), \(R_{it} \) denotes the actual return and \(R_{mt} \) denotes the market return at time period \(t \). \(\alpha + \beta \cdot R_{mt} \) denotes the normal return of the firm due to the market-wide movement. The abnormal return is defined as the difference between the actual return and the normal return. This is the part of the actual return that cannot be explained by market movements and captures the effect of the event. Since most of the tech stocks are listed on NASDAQ, we use this as our indicator for market returns. We use ordinary least squares regression to estimate the coefficients \(\alpha \) and \(\beta \) for the above model over the estimation window. The estimation window, of size between 120-200 days used in most studies, is the period immediately before the event window. In our case, we use an estimation window of size 160 days, from day -175 to day -16.

2. The Market Adjusted Model

In this case, the abnormal returns are given as

\[AR_{it} = R_{it} - R_{mt} \]

where the terms have the usual meaning as in the Market Model.

3. The Mean Adjusted Model

\[AR_{it} = R_{it} - \bar{R}_i \]

where \(\bar{R}_i = \sum_{s=1}^{T} R_{is} \) is the mean return on the stock which made a vulnerability announcement during event \(i \), over the duration of the estimation period (\(T \) is the length of the estimation period).

The mean abnormal return across all observations on day \(t \) of the event is given as \(\bar{A}_t = \sum_{i=1}^{N} AR_{it} \). The cumulative abnormal return \(CAR = \sum_{event} \bar{A}_t \) for the event is defined as the sum of the abnormal returns over the event window. Since vulnerabilities were disclosed by more than one vendor on a given day, our test statistic should allow for event day clustering. The following t-statistic proposed by Brown & Warner(1985) takes into account event day clustering as well as cross-sectional dependence in the security specific excess returns.

\[^4 \text{We also highlight our results using different values of the event window.} \]

\[^5 \text{\(R_p \) for a stock is the percent change in the stock price at time \(t \), \((=P_t - P_{t-1})/P_{t-1} \)} \]

\[^6 \text{We obtain the data on the stock and market returns from Yahoo Finance(http://finance.yahoo.com)} \]
\[t = \frac{\bar{A}}{S_A} \] \hspace{1cm} (4)

Where \(S_A^2 = \frac{1}{T-1} \left(\sum_{s=1}^{T} (A_s - \bar{A}) \right) \) and \(\bar{A} = \frac{1}{T} \left(\sum_{s=1}^{T} A_s \right) \)

The null hypothesis is that the abnormal returns are not significantly different from zero. Under the null hypothesis, the abnormal returns are independent and identically distributed and normal with a mean of zero and the variance given by the variance of abnormal returns over the estimation period.

Results

Table 2 summarizes the results of our event study and quantifies the effect of vulnerability disclosures on the stock prices of software vendors (p-values are in parenthesis)

<table>
<thead>
<tr>
<th>Day 0 CAR</th>
<th>Market Model</th>
<th>Market Adjusted Model</th>
<th>Mean Adjusted Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Abnormal Return</td>
<td>-0.63 (0.01)</td>
<td>-0.67 (0.01)</td>
<td>-0.5 (0.09)</td>
</tr>
</tbody>
</table>

Table 2: Cumulative Abnormal Return

We calculate CARs under three different models (Market Model, Market Adjusted Model and Mean Adjusted Model). From Table 2, we note that the CAR for day 0 is negative across all the three different models. E.g. the Mean Abnormal Return varies between 0.5%-0.67% depending on the model used. Thus, our results suggest that software vendors do tend to lose market value when a vulnerability is announced in their product. This provides support for hypothesis \(H1 \) that vulnerability announcements are associated with a loss in market value of software vendors. We also calculate the abnormal returns using different event windows using the Market Model(Table 3).

<table>
<thead>
<tr>
<th>Day</th>
<th>-1</th>
<th>0</th>
<th>0 to 1</th>
<th>0 to 2</th>
<th>0 to 5</th>
<th>0 to 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR (p-value)</td>
<td>0.25 (0.4)</td>
<td>-0.63 (0.01)</td>
<td>-0.65 (0.07)</td>
<td>-0.47 (0.35)</td>
<td>-0.25 (0.7)</td>
<td>-0.8 (0.36)</td>
</tr>
</tbody>
</table>

Table 3: CAR for various time periods

From the table, it is clear that the CAR on day 0 is negative and significant at the 0.05 level. However, CAR for day 0 and day 1 combined is significant only at the 0.07 level. This suggests that the stock market is efficient in the sense that the effect of a software vulnerability announcement is quickly incorporated into a vendors’ stock price. The p-values for day -1 is not statistically significant. A possible explanation for this is that the effect of news leakage through forums like SecurityFocus is not significant. The CARs in columns 3-6 are negative but not statistically significant. However, it is interesting to note that the CARs are negative for even a 10 day window.

Our result corroborates prior work on defective products(Jarrell and Peltzman, 1985; Davidson and Worrell, 1992) by showing that product defects lead to a loss in market value of a firm. We find that defective software which compromises the security of customers’ information systems leads to a negative impact on the market value of the software vendor.

EFFECT OF VULNERABILITY CHARACTERISTICS
We first compare the mean CARs of different sub-samples based on vulnerability characteristics to understand how various factors affect market value of the firms. We look at three specific vulnerability characteristics – source of discovery, source of disclosure and whether Microsoft product (Table 4).

<table>
<thead>
<tr>
<th>Vulnerability Characteristic</th>
<th>Variable</th>
<th>CAR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of Discovery</td>
<td>Discovered by Vendor(36%)</td>
<td>-0.95</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Discovered by Third Party(64%)</td>
<td>-0.47</td>
<td>0.2</td>
</tr>
<tr>
<td>Source of Disclosure</td>
<td>Industry Sources (65%)</td>
<td>-0.47</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Press(35%)</td>
<td>-0.98</td>
<td>0.04</td>
</tr>
<tr>
<td>Microsoft vs. Non Microsoft</td>
<td>Microsoft(46%)</td>
<td>-0.28</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Non-Microsoft(54%)</td>
<td>-0.91</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 4: Sub-Sample Method

Surprisingly, when vendors disclose the information, investors seem to perceive it more negatively than when some third party releases it. The source of disclosure is also relevant. Investors seem to pay more attention to vulnerabilities published in mainstream newspapers than to industry sources such as CERT. Finally, we do not find an evidence of Microsoft effect though, non-Microsoft firms seem to lose more value.

Ongoing Research

A drawback of the sub-sample method is that this could give spurious results because the effects of a sub-sample, such as press vs. industry sources, can be explained by a relationship between press and other independent variables. Therefore we also use a regression model to explain the effect of various vulnerability characteristics on abnormal returns. The regression method has the advantage over the sub-sample method that the regression method captures the effect of all the independent variables simultaneously. However, ordinary least squares model might not be appropriate because it does not account for heterogeneity among firms. The issue of heterogeneity is an important consideration in analyzing panel data. For example, the level of abnormal returns could differ across firms if investors use different valuation models across firms. Estimating aggregate parameters while ignoring heterogeneity could lead to biased and inconsistent estimates (Hsiao 1986).

To incorporate the impact of firm specific heterogeneity in our data, we propose a fixed effects model. The fixed effects model controls for unobservable firm specific variables that are constant over time. This is equivalent to generating dummy variables for each firm and including them in an ordinary linear regression to control for firm specific effects. The model can be specified as:

\[y_{it} = X_{it} \cdot \beta + \mu_i + \varepsilon_{it} \]

where \(i = 1, \ldots , N \) (\(N \) is the total number of firms) and \(t = 1, \ldots , T \) (\(T \) is the total number of events), \(y_{it} \) is the Abnormal Return (\(AR_{it} \)) for firm \(i \) at event \(t \) as calculated according to the market model in equation (1). \(X_{it} \) are the independent variables which capture the various vulnerability characteristics, \(u_i \) is the firm specific dummy variable.

By AMCIS 2005, we expect to complete the analysis on this section of our research and present the results at the conference. So far, our analysis tests for hypothesis \(H1 \) and \(H5 \). Our results from the regression would test hypothesis \(H2, H3 \) and \(H4 \).

CONCLUSIONS AND DISCUSSION

To the best of our knowledge, this is the first study to analyze the impact of product defects on software vendors. We also analyze the information content of the vulnerability disclosure announcement and classify vulnerabilities into various subtypes. Our results show that vulnerability disclosure leads to a significant loss of market value for software vendors. This
indicates that the stock markets react negatively to the news of a vulnerability disclosure, because the discovery of a vulnerability could suggest a loss in future cash flow of the software vendors. Software vulnerabilities affect the cash flows of a vendor in two main ways: One, the vendor has to spend time and effort in providing a patch for the vulnerability, which increases the overall cost of the software product and hence reduces profits. Vulnerabilities may also lead to customer dissatisfaction because the customer has to spend time and effort in installing patches and is exposed to a risk of security related attacks. This could further lead to customers shifting to competitor’s products and hence reduces the cash flow for the vendors’ products.

Our study also provides preliminary evidence that firms should integrate security into software quality practices. In a firm with limited resources, this would mean focusing testing efforts in areas that have a greater number of security vulnerabilities. Although researchers in computer science have stressed on this fact (McGraw 2004), there hardly exists any literature in software engineering economics which measures the return on investment of incorporating security based metrics in software quality or software risk assessment. While software quality traditionally deals with functional testing, complete security testing would incorporate non-functional testing we well, i.e. subjecting the software to misspecified input streams.

Comparison with prior event studies:

It is interesting to compare how the abnormal returns in our event study compare with results in prior event studies. Specifically, we compare our results with event studies in the following categories: security breach related announcements and product recall related announcements (Table 5). It is especially interesting to note that the loss in market value that vendors suffer due to a security vulnerability is much less than that suffered by firms during a security breach.

<table>
<thead>
<tr>
<th>Classification of Event Study</th>
<th>Authors</th>
<th>Time Period</th>
<th>CAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact of Vulnerability Disclosures on Software Vendors</td>
<td>Telang and Wattal(2004)</td>
<td>1999-2004</td>
<td>-0.63%</td>
</tr>
<tr>
<td>Impact of Product Recall Announcements</td>
<td>Jarrell and Peltzman(1985)</td>
<td>1967-1981</td>
<td>-0.81% (for auto)</td>
</tr>
<tr>
<td></td>
<td>Davidson and Worrell(1992)</td>
<td>1968-1987</td>
<td>-0.36% (day -1)</td>
</tr>
</tbody>
</table>

*Not Significant at 10% level

Table 5: Summary of previous event studies

Implications for Software Quality and Disclosure Policy

As we noted in introduction, one major argument given by the full disclosure group is that it will eventually force the vendors to improve the quality of their product. From our analysis, there seems to be some support for this argument. Disclosure, in general, adversely affects the market valuation of the vendors. However, market value is only one metric to capture the impact of disclosure. Our paper does provide a starting point for why we should analyze this issue in more detail. Another potential area of future research would be to capture and test the link between security based risks and the quality of software systems.

Our study points that vendors are not necessarily better off disclosing information themselves. Generally, an argument could be made that vendors should release the information themselves, for if not, someone else will and it will lead to worse consequences. However, we do not find any evidence of this. In our sample, none of the vulnerabilities was discovered by hackers. Hackers however exploit vulnerabilities once they are made public by searching for un-patched systems. Vendors are probably better off keeping quiet and integrate their fixes as either service packs (which do not give micro-details on what it fixes) or newer versions and announce the patch only if someone else has disclosed it.

Some vulnerabilities are posted on a public listing such as Bugtraq before these are announced in popular press or CERT. In that case, the actual vulnerability announcement may have little surprise value. Therefore our results are a lower bound for the actual decrease in stock prices experienced by the software vendor if a flaw is reported in its product. We do not include the vulnerabilities reported on Bugtraq since most of these are not confirmed vulnerabilities at the time they are posted online.
A limitation of our study is that most of the data points in our sample are announcements regarding off-the-shelf software products. Our analysis does not cover software development projects where a software failure can cause millions of dollars worth of damage. The main reason for excluding them was the lack of availability of data on software failures in such cases. We also reiterate that further analysis in terms of market share or profitability is needed to fully understand how vulnerability disclosure signals poorer quality and how it affects the vendors’ incentives to provide better quality software.
REFERENCES