Interface Considerations in a Web-Based Pediatric Electronic Medical Records System

Mark Ginsburg
Seventh Rank Associates

Follow this and additional works at: http://aisel.aisnet.org/amcis2006

Recommended Citation
http://aisel.aisnet.org/amcis2006/321
Interface Considerations in a Web-Based Pediatric
Electronic Medical Records System

Mark Ginsburg
Seventh Rank Associates
mark@seventhrank.com

ABSTRACT
The development of private practice Electronic Medical Records (EMR) systems are being driven by economic impetuses (to reduce health care costs), ethical ones (to improve patient care by reducing errors) and social ones (to fit into the US Federal mandate of a planned National Health Information Network (NHIN). This research-in-progress details the design and implementation of a Pediatric Web-based EMR System, PedOne™ with particular attention paid to the major aspects of its user interface experience. Parallels are drawn between the ideal attributes the hypothetical NHIN strives to achieve and the design goals of PedOne™.

Keywords
Electronic Medical Records, Interfaces, Pediatrics, Design, Standards, National Health Information Network (NHIN)

INTRODUCTION
The medical profession private practice and information technology (IT) has never seemed a good match. Despite numerous articles detailing the cost of antiquated IT (e.g. Baker 2004a), efforts have been sporadic. Although the benefits of Electronic Medical Records (EMR) systems are self-evident (such as reduced error rate in diagnosis and procedure coding, and a more reliable longitudinal patient history), and doctors have expressed interest (Baker 2004b), adoption in the private sector remains small (Baker 2005). Recently, US Government policy statements have prioritized a national healthcare information network (NHIN). The President’s State of the Union Address (Anonymous, 2006) explicitly mentions nationwide electronic health records as a tangible goal. The IEEE (Institute of Electrical and Electronics Engineers) Medical Technology and Policy Committee (MTPC) have issued a position paper and white paper (Anonymous, 2005; Jepsen et al., 2006) detailing the major functional attributes of the proposed NHIN. Interest is high and fledgling standards to meet the ambitious NHIN requirements are in flux (Mosquera, 2006; Bell, 2005; Broder, 2006; Lawrence, 2006). In this research-in-progress, we present a private practice EMR system, PedOne™, that meets several of the stated NHIN goals and discuss its interface considerations.

THE PEDONE SYSTEM BASICS
PedOne™ is a three-tier architecture web-based system for the doctors, nurses, and staff in a small private pediatric practice in use since November 2005. It uses the MySQL database on the back-end with the Red Hat Enterprise Linux operating system, Perl and JavaScript, and HTML with Cascading Style Sheets (CSS) to provide a consistent look and feel across the pages. The practice accesses the server with a variety of wired and wireless tablets, laptops, and desktops, running Windows XP. Many of the users prefer the Mozilla Firefox web browser for its tabbed interface feature; however no particular web browser is required (the system is ‘agnostic’ across operation systems and browsers). The interface philosophy borrows heavily from the efforts of Eric Meyer and Jeffrey Zeldman (Meyer, 2003; Zeldman, 2003) touting the worth of open standards development. Separating the content from the presentation is a good design idea, easing maintenance and imparting distinctive and intuitive styles to such important things as system error messages and form instructions. In addition, avoiding the trap of proprietary technologies conforms with the NHIN emphasis on standards and interoperability (Jepsen et al., 2006).

Specific CSS and JavaScript tricks are taken from useful web standards sites; a selection of valuable resources is shown in Table 1. Just as NHIN is recommended to be built on “existing Internet standards” (Jepsen et al., 2006), so PedOne™ is based on standard XHTML and CSS and the industry open source database leader, MySQL. The JavaScript is harder to call a standard, but the Firefox implementation is closely aligned to the standard scripting language ECMAScript. PedOne™ is a Rapid Application Development (RAD) prototype that undergoes constant interface alteration based on dialog with the users.
PEDONE WALKTHROUGH AND INTERFACE DISCUSSION

Using an amalgamation of CSS and JavaScript techniques culled from the sites listed in Table I, a clean layout was devised. It is a two-column, four-component layout. On the left, there is a navigation Menu and the user’s role is clearly indicated (for example, a biller, or a scheduler, or the site administrator). The administrator has the ability to set up new user accounts and roles. At the top, there is a standard Header, on the left, the Menu, on the right, the Content, and on the bottom, the Footer. The introductory screen (after user logon) is shown in Figure 1. The Footer is omitted to save space.

Table 1. Useful Web Standards Design Resources

<table>
<thead>
<tr>
<th>Title</th>
<th>Maintained By</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Meyer CSS</td>
<td>Eric Meyer</td>
<td>http://www.ericmeyeroncss.com/</td>
</tr>
<tr>
<td>A List Apart</td>
<td>Jeffrey Zeldman</td>
<td>http://www.alistapart.com/</td>
</tr>
<tr>
<td>Real World Style</td>
<td>Mark Newhouse</td>
<td>http://realworldstyle.com/</td>
</tr>
</tbody>
</table>

Figure 1. The PedOne Entry Screen

Figure 1 shows the basic geometry. CSS techniques provide highlighting of the left Menu entries on a mouse-hover event. CSS rules place border lines around system messages, such as the instruction box shown in the Content area. The user in this
case, ‘Mark’, has Billing Rights and Administrative Rights as indicated by the ‘B’ and the ‘*’ at the top of the Menu. The Menu is dynamic; adding and subtracting options depending on both user role and context. For example, if the user is positioned on a Patient Visit, the Menu will provide Billers with an additional option to format and print an insurance claim form (the HCFA-1500 form). The users mentioned as a key requirement clear role identification in the menu.

Design Goals of PedOne

The IEEE MPTC E-Book (Jepsen et al., 2006) mentions functional and semantic interoperability as a key goal of the NHIN. They are also an important deliverable of PedOne™. The functional piece is trivial for electronic systems; it simply means recording form fields and retrieving them without error. The semantic portion is more challenging. Simply put, there are numerous coding standards that confront the practice staff. Two of the major code families are the ICD9 (International Classification of Diseases, 9th Revision) for diagnoses and Current Procedural Terminology (CPT) for procedures (exams, medications, supplies, treatments). These codes change over time, and are essential for patient record keeping, billing, and insurance claims submission. Semantic interoperability means the users have to successfully interpret the coded information in the system session. Only the code is necessary for billing and claims; but the description helps sense-making efforts during the data input. Thus it is important to give the users an easy way to edit code descriptors and have the new, simpler descriptors made immediately available in the online forms. Figure 2 shows an example of this (Menu, Header and Footer omitted to save space).

Figure 2. Friendlier ICD9 Descriptors

If the user clicks on the code on the left column in Figure 2, an edit screen is brought up to change code descriptors. Similarly, the user can change CPT descriptors and add unit charges for CPT procedures. It is important to note that PedOne™ must provide an accurate longitudinal patient record (also a key goal of the NHIN) – thus if a code changes, the
old code must not be deleted and must instead be flagged as inactive. It is often important to go back to the moment of the diagnosis or procedure to resolve billing or patient history issues.

ICD9 and CPT codes are the backbone of many of the system functions. For example, to post a charge, the user needs to select up to four diagnoses and up to six procedures (these are the limits of a single claims submission form; if the limits are exceeded multiple claims are produced). The interface becomes busy and techniques were devised to make it as easy as possible for the biller to work his or her way through the screen. Figure 3 shows the basic charge posting screen.

Figure 3 shows a cascading set of “DIV” elements as defined in the CSS global style rules. The user can toggle them (hide or show) by clicking on the links which are in square brackets, such as [Imm] for Immunization diagnoses, Injuries, Insect Bites, and so on. Segregating the codes into categories has several advantages. Many of the code sets are used only infrequently, such as Insect bite. If we put all the codes into one list, the user would have to struggle with the mouse and the scroll-bar. Another advantage is we can provide specific functions for each category. Thus the [Edit icd9 Imm] link shows only Immunization-specific ICD9 codes for editing akin to Figure 2. Figure 3 also shows the handy calendar widget on the upper right. As the user picks from the category lists, items are transferred into the slots which are shown at the bottom of Figure 3. This user screen also includes CPT codes, similarly grouped, which populate 6 slots (not shown for space reasons). When the ICD9 or CPT slots are filled, the Javascript alerts the user and provides a link to clear them and start over. The goal here is to reduce the “cost structure of information” (Card, Mackinlay, and Shneiderman, 1999) by pre-populating fields as much as possible and hiding little-used fields. The net effect is faster data throughput to the internal accounting system, freeing the biller for other tasks.

![Figure 3. Charge Posting Screen.](image-url)
Scheduling Patient Visits

One of the most important modules is the Scheduler. In this screen, the doctors are organized by column in the Content section, and patient visit types are represented by various intuitive icons. Simple self-documenting icons were created and approved by the users. For example, a well-visit is shown by a heart icon and a sick visit is a patient with an IV bottle. A sample day is shown in Figure 4.

![Scheduler Day View](image)

Figure 4. The Scheduler Day View.

Figure 4 also shows a mouse-hover event (circled) on a certain appointment. Metadata about the appointment is displayed, such as the date and time it was made, contact information, and the staff ID who created the record. In this case, the mouse is hovered on a visit type of Medication Check and the icon is a pill bottle. The screen region to bring up the metadata is fairly large; it is the rectangular size of the appointment (in 15 minute units). Another set of actions is available on right-click (implemented with a JavaScript context menu). An excerpt of the right-click action is shown in Figure 5.

Figure 5 shows that right-clicking gives the users a chance to edit (change its date and time, using the familiar calendar widget), delete it altogether (placing the user at the same page, minus that appointment) or generate an encounter form.
Figure 5. Right-Clicking on an Appointment.

Searching for a Patient: Using the AJAX Technique

A common task is to locate a patient, with the aim of entering vital measurements, or conducting a sick- or well-visit doctor interview. We made use of the AJAX framework in the search (Garrett, 2005) which is a combination of Javascript and XML messaging to communicate asynchronously between the client and the server. The request is made when a certain form field changes. Figure 6 shows an example of the AJAX technique in patient search.

Figure 6. The Patient Search Uses the AJAX Technique
In Figure 6, the “Test” entry fetches all patients whose names start with Test. Two actual patient names and the primary care physician are blanked out for anonymity. The completions are placed in an inline XHTML element called an ‘Iframe’. This is a very useful interface technique, but one must be careful with long auto-complete lists. They may shift or obscure the standard Content and Footer components. Also shown in this Figure is a standard CSS-defined Instruction box. Color rules are used to simplify the user help display. Another interface consideration is to daisy-chain likely event sequences. Thus ‘Schedule’ (to make an appointment) and ‘Edit’ (to change patient or custodian information) are both hyperlinks in the auto-completion list.

The Doctor Sick-Visit Interview

The authors worked closely with the doctors to design a sick-visit interview form. It is highly tailored to pediatric practice, with domain specific prescription ‘hints’ (for example, dosage per kilogram) and other granular input areas. An excerpt of the sick-visit form is shown in Figure 7.

Figure 7. The Doctor Sick-Visit Interview.

Figure 7 shows part of the lengthy form. JavaScript is used to colorize the focused field – the interface consideration is to help the users in a long form with location cues. In this case, the user is positioned on the NEURO comment box and it is yellow. The Rx List is analogous to the ICD9 and CPT lists we saw earlier. The doctor can peruse the template and populate up to 4 Rx slots, or clear them out if an error was made.
CONCLUDING REMARKS

In this quick tour of the PedOne™ system, we have illustrated some of the major functional modules and discussed how the interface considerations dovetail with recommendations set forth for the National Health Information Network. This commonality is logical since private practice EHR systems are part of the NHIN architecture (as are hospitals, insurance carriers, and the patient community). We have also shown how PedOne™’s reliance on open web standards has simplified much of the interface design.

ACKNOWLEDGMENTS

We thank the staff of Orange Grove Pediatrics for giving us unlimited access to the doctor, nurse, and front-office staff for system iteration.

REFERENCES

1 PedOne™ is a registered Arizona trademark of Seventh Rank Associates, LLC. All rights reserved.