Understanding IS Team Coordination in Real Time: A Process Approach to Coordination

Research-in-Progress

Hazbi Avdiji
Faculty of Business and Economics (HEC), University of Lausanne
CH-1015 Lausanne, Switzerland
hazbi.avdiji@unil.ch

Stéphanie Missonier
Faculty of Business and Economics (HEC), University of Lausanne
CH-1015 Lausanne, Switzerland
stephanie.missonier@unil.ch

Stefano Mastrogiacomo
Ecole Hôtelière de Lausanne
CH-1000 Lausanne 25
stefano.mastrogiacomo@ehl.ch

Abstract

The current research-in-progress manuscript proposes a shift to a new approach to team coordination in IS projects. Previous studies have regarded team coordination through variance analyses. They identified explicit and implicit coordination mechanisms that are significantly related to team coordination, depending on some contingencies (e.g. team and task configuration, context). While such studies have greatly advanced our knowledge of the factors that impact team coordination, we have little knowledge of the activities and events that make up team coordination, and thus how team coordination concretely occurs. We propose a process model of coordination based on psycholinguistics in which we identify the fundamental activities that IS teams perform to coordinate: interacting and contributing. We highlight the propositions that will be tested by analyzing conversations from six teams involved in scenario-based projects from the AMI meeting corpus. Our process model will unveil the fundamental activities involved in both explicit and implicit coordination.

Keywords: Team coordination, process theory, common ground, implicit and explicit mechanisms
Introduction

Managing an IS project is one of the most challenging activities in organizational life both for IS departments and their clients (Henry et al. 2003; Mähring 2002). This challenge stems from the inherent complexity associated with IS projects in regard to the rapidly changing nature of the technology and project team specificities (Faraj and Sproull 2000). These relate to task uncertainty and need for knowledge sharing. Such issues imply the need for team members to coordinate with each other (Boehm and Turner 2004; Mähring 2002). Consequently, team coordination which is achieved by concerted action among team members, has recently appeared as a major focus in understanding IS project failure or success (Espinosa et al. 2007; Hoegl and Gemuenden 2001). Dongus et al. (2015) showed that coordination, trust and knowledge integration have the strongest effect on IS project performance. Despite the high interest of IS research for team coordination, practitioners encounter many difficulties to reach and sustain IS team coordination in real time. Symptomatically, project management methodologies, such as waterfall (e.g. PMBOK and PRINCE2) or agile methodologies do not clearly elaborate on how coordination occurs and how it can be supported (Dingsøyr et al. 2010; Strode and Huff 2014) while they consider it as a key process.

In this research, we assume that one of the main reasons that team coordination is still a fuzzy and complex endeavour may be found in the epistemology of prior research. The prominent perspectives on team coordination adopted in prior IS and organizational literature relate to variance perspectives (know-that-in-order-to-explain). Studies using a variance approach in the sense of Mohr (1982) explain and predict team coordination (the outcome or the dependent variable) through different sets of coordination mechanisms (the predictors or independent variables). Yet, while previous studies have greatly advanced our knowledge of the factors that impact team coordination, they do not inform us on how team coordination concretely happens, which remains problematic for practice. As a consequence, this paper aims to propose a process model of coordination so that we know the activities involved in coordination in order to know how to manage team coordination (know-how-in-order-to-do). The current research proposes the premises to answering: How does team coordination occur in IS projects with regard to the fundamental events and activities involved over time?

Previous Accounts of Team Coordination: A Variance Approach

Studies on team coordination in IS tend to draw on coordination concepts from organization studies. Such literature is mainly focused on coordination mechanisms, which can be discerned into three main different streams: explicit, implicit, and integrative mechanisms. Whatever the stream, they use a variance approach. Depending on moderators, previous studies suggest that some mechanisms prove more or less effective for team coordination.

For instance, research focused on explicit coordination mechanisms revealed that depending on the kind of interdependencies (moderator), individuals must select a type of coordination mechanism (independent variable) to coordinate effectively (dependent variable). This stream is interested in mechanisms that are explicitly used by a team for the purpose of managing task dependencies (Malone and Crowston 1990, 1994; Espinosa et al. 2001). Such mechanisms represent the set of practices and devices – plans and rules (March and Simon 1958), administrative coordination (Faraj and Sproull 2000), or objects and representations (Star and Griesemer 1989) – that are used by teams to manage the parts of their work that are more stable and predictable. The use of the mechanisms depends on the type of the task (Crowston 1997; March and Simon 1958; Thompson 1967). Similarly, various studies suggested that there are instances where multiple contingencies, can be adequately addressed with a specific coordination strategy (Andres and Zmud 2002; Espinosa et al. 2004; Nidumolu 1995, 1996). For instance, Espinosa et al (2004) explained that team communication may be very important for complex intelective tasks in which task dependencies are somewhat uncertain or for the early stages of a task, when team members are still unfamiliar with the task and with each other. On the other hand, team communication may not be so important for more mechanical tasks (e.g., coding) in which dependencies are more predictable or for the late stages of a task, once team members know each other.

The other stream of contemporary research has analyzed coordination through implicit coordination mechanisms that are used in addition to explicit mechanisms when teams operate in dynamic, uncertain
and complex contexts (Mohammed et al. 2010). These mechanisms are in the form of cognitive mechanisms, i.e. team members share a same understanding of the situation they are in. This way, they can coordinate their contributions without providing a conscious effort to manage these interrelated interactions (Cannon-Bowers and Salas 2001; Klimoski and Mohammed 1994). Previous literature in both organization and IS research has used different wordings to describe that same phenomenon: team mental models (Cannon-Bowers et al. 1993; Espinosa et al. 2002; Klimoski and Mohammed 1994; Kraiger and Wenzel 1997; Mathieu et al. 2000; Rouse et al. 1992; Yang et al. 2008; Yu and Petter 2014), team situation awareness (Endsley 1995; Lu et al. 2008; Sonnenwald et al. 2004; Wellens 1993), transactive memory (Hsu et al. 2012; Lewis 2003; Liang et al. 1995; Nevo and Wand 2007; Oshri et al. 2008; Wegner 1987), mutual knowledge (Cramton 2001; Fussell and Krauss 1992; Kanawattanachai and Yoo 2007; Krauss and Fussell 1990), or collective mind (Crowston and Kammerer 1998; Hsu et al. 2011; Weick and Roberts 1993). One notable study on team implicit coordination is that of Rico et al. (2008). Their analysis of coordination uses a variance approach as it considers implicit coordination as a dependent variable that can be explained by the independent variable of the sharedness and accuracy of team situation models.

Finally, the last stream of contemporary research has had an integrative view of the explicit and implicit coordination mechanisms to provide a holistic view of team coordination (Espinosa et al. 2004; Okhuysen and Bechky 2009; Williams and Karahanna 2013). While most studies in this stream view coordination as a process and use an input-process-outcome lens of coordination, their contributions are made in the form of variance models and frameworks. For instance, in agile software development, Strode et al. (2012) proposed a theory for coordination in the form of a variance theory with delineated concepts and mechanisms. They framed coordination effectiveness as encompassing both explicit coordination (right thing, right place and right time) and implicit coordination (know why, know what, know what to do, and know who). Yet, we do not yet know how the cognitive state of “knowing why” or “knowing who is doing what” lead to coordination.

The Need for a Process Approach of Team Coordination

Following the logical structure of variance models, previous studies do not inform us on how coordination concretely happens: the actions that team members perform (e.g. what to do and at what point in time) (Sandberg and Tsoukas 2011). This remains problematic as it is difficult for practitioners to draw on the ever-growing list of coordination mechanisms to ensure effective team coordination in practice. As Newman and Robey (1992, p. 250) illustrated, practitioners are left with a “puzzle wherein the pieces can be identified but where the [practitioner] is left to his or her own resources to put the puzzle together”. Previous studies and project management methodologies provide little guidance to practitioners on which mechanisms to use in which situations and configurations.

<table>
<thead>
<tr>
<th>Perspective</th>
<th>Variance models</th>
<th>Process models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach to coordination</td>
<td>Coordination is accomplished through different mechanisms depending on the nature of the joint activity, the context, and team configuration</td>
<td>Coordination is a continuous process of events and actions to achieve a joint purpose.</td>
</tr>
<tr>
<td>Core premise</td>
<td>Coordination is contingent. Fit-alignment between coordination mechanisms and contingencies.</td>
<td>Coordination is about solving coordination problems. Activities and events for solving any coordination problem.</td>
</tr>
<tr>
<td>Overarching question</td>
<td>Under what conditions does A or B significantly impact C (coordination)? Which coordination mechanisms are more effective in regard to the different contingencies (activity and team configuration, context)?</td>
<td>What activities and events are included in C (coordination)? What are the fundamental activities and events involved in team coordination?</td>
</tr>
</tbody>
</table>

A process model for team coordination proves necessary to overcome this practical shortcoming and to build on the extant variance studies to provide a comprehensive understanding of team coordination as suggested by Mackenzie (2000). In fact, process models are able to explain the degree of association between the dependent and independent variables by informing on the actions, events, and processes that
occur for each mechanism (Newman and Robey 1992). We compare the variance and process approaches on team coordination to clarify the theoretical nature of each approach and will explain what our study adds to extent knowledge (Table 1).

The Process Model of Coordinating in IS Teams

Theoretical Foundations

To develop our process model, we use a different perspective on coordination that shares our assumption of viewing coordination as a process: Clark (1996)'s theory on joint activities. Clark's approach specifies the cognitive conditions necessary for effective coordination and the linguistic acts by which coordination is accomplished. According to Clark, coordination is concerned with what team members do whenever they have common interests or goals, which lead to the issue of interpredictability (Schelling 1960). We mobilize Clark (1996)'s psycholinguistic theory on joint activities for several reasons: (1) it focuses on coordination in and through language, which is our main medium to coordinate (Tomasello 2009, pp. 72–74); (2) it identifies the fundamental activities for coordinating in and through conversation, and (3) it presents requirements that should be met for two or more people to coordinate on any type of joint activity. Consequently, his theory is a great source for the elaboration of the process (how) through which teams coordinate. The main constructs of our process model are derived from his theory.

The first concept concerns common ground. According to Clark (1996, p.203), the requirement for two or more people to coordinate on a joint activity is that they must (1) identify the joint purpose of the joint activity, (2) be able to do their part in fulfilling the joint purpose, (3) must be willing to do their part, and (4) believe that the three first conditions are met for everyone involved in the joint activity and that each is aware of everyone’s beliefs. The latter condition relates to the need for individuals to make the first three conditions part of their common ground. Common ground represents the set of knowledge, beliefs, and suppositions that people believe they share (Klein et al. 2005). Put differently, a piece of information is in A and B’s common ground if A knows X, B knows X, A knows that B knows X, B knows that A knows X, and so on and so forth iteratively. Mastrogiacomo et al. (2014) developed a nomenclature for Clark (1996)'s first three requirements that is more comprehensible by project team members around four variables: joint objectives (what the participant intend to do together), joint commitments (what participants expect each other to do), joint resources (what the participant need to play their part), and joint risks (what could prevent the participant from playing their part). These represent the content of the common ground that project team members need to establish through conversation during meetings.

The second set of concepts is based on the main conversational activities (grounding and monitoring) individuals perform so that they can coordinate on the joint activity. Clark (1996, p.195)'s concept of grounding provides great premises for the analysis of how teams coordinate. Grounding is the process through which two or more individuals establish a piece of information as part of their common ground. It relies on conversational contributions in that the speaker presents a contribution to the addressee(s) and the latter accept(s) the contribution. Both parties then engage in the process of ensuring that the contribution was construed correctly. If that is the case, the information they are discussing is part of the individuals’ common ground. Else, the misunderstanding can remain undetected, in which case the information is not part of their common ground. On the other hand, individuals can detect they do not have a consensus on the meaning and repair the misunderstanding. Here, individuals monitor the misunderstanding allowing them to make that information part of their part of common ground.

The last concept relates to performing the joint activity (doing one’s part). Clark (1996, p. 203) explained that once individuals have grounded and monitored their knowledge on the joint purpose and their willingness and ability to cooperate, individuals do their part as agreed on closure. That is, they make their individual contributions toward the joint purpose (or project).

Primary Constructs and the Relationships Between Them

Our process model of coordinating in teams is depicted on Figure 1. An overview of our main constructs is summarized in Table 2. Our model depicts team coordination as a continuous and recursive process involving two main activities that team members perform: interacting (grounding, updating, and monitoring) and contributing (making individual contributions). Depending on the results of such
activities, either their individual contributions are aligned (thus coordinate effectively) or their individual contributions are misaligned (they coordinate ineffectively). The process is continuous and recursive as it is triggered by the emergence of any new relevant information and as any contributions (either from effective or ineffective coordination) are a source of relevant information.

Table 2 – Constructs of our Process Model

<table>
<thead>
<tr>
<th>Clark’s concepts</th>
<th>Constructs</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relevant Information</td>
<td>Any information that is related to the basic requirements for coordination (i.e. joint objectives, joint commitments, joint resources, joint risks) (Clark, 1996; Mastrogiacomo et al. 2014).</td>
</tr>
<tr>
<td>Common ground</td>
<td>Required state of common ground</td>
<td>The state when each team member knows the Joint Objectives, Joint Commitments, Joint Resources, and Joint Risks of the joint purpose and knows that all the other team members they need to coordinate with know them as well. (Clark, 1996; Mastrogiacomo et al. 2014)</td>
</tr>
<tr>
<td></td>
<td>Actual state of common ground</td>
<td>The actual state of the team members’ recursive knowledge on the basic requirements for coordination on a joint purpose (i.e. joint objectives, joint commitments, joint resources, joint risks) (Mastrogiacomo et al. 2014).</td>
</tr>
<tr>
<td>Grounding</td>
<td>Grounding and Updating</td>
<td>The conversational activity through which a team establishes a piece of information as part of their common ground. Information that is in a team’s common ground might become obsolete or forgotten over time, in which case teams can update on the information.</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Common ground shortage</td>
<td>Difference in terms of knowledge between the required and actual states of common ground (Clark 1996, p.49). Can either originate from missing information (Klein et al. 2005) or erroneous information (Mastrogiacomo et al. 2014).</td>
</tr>
<tr>
<td></td>
<td>Monitoring</td>
<td>The conversational activity in which a team engages to correct a detected shortage between its state of common ground and the required one. Involves the detection and correction of the shortage. The outcome of monitoring leads to corrected common ground (Clark 1996, p.195).</td>
</tr>
<tr>
<td>Doing one’s part</td>
<td>Making individual contributions</td>
<td>The individual actions made by team members that contribute to the joint purpose (or project) (Clark 1996, p. 203).</td>
</tr>
<tr>
<td></td>
<td>Coordinating effectively</td>
<td>The state of coordination when there are no common ground shortages. All team members have the required and correct recursive knowledge to make aligned contributions, thus act harmoniously.</td>
</tr>
<tr>
<td></td>
<td>Coordinating ineffectively</td>
<td>The state of coordination when there are common ground shortages. Members of the team make misaligned contributions based on missing or erroneous information, refraining them from acting harmoniously.</td>
</tr>
</tbody>
</table>

Grounding and Updating

The trigger of the model is the event of the emergence of a new piece of information relevant for coordination. A piece of information is considered relevant if it belongs to the four domains that constitute the requirements to coordination according to Mastrogiacomo et al. (2014). Hence, we only consider information related to the project. By definition, such information is automatically part of the required common ground (see [1] in the Figure 1) as the latter contains all the correct knowledge regarding the four domains. However, new relevant information does not automatically add up to the team’s actual common ground. According to Clark (1996), for a piece of information to be part of their actual common ground, teams first need to ground it (see [2;3] in Figure 1). That is, all team members should discuss the information together (mostly during meetings) and make sure that everyone has a correct understanding of it. In addition, a piece of information that was once established as part of the team’s common ground might become obsolete or forgotten over time. Here, teams can update the information to ensure that it is
still in their common ground. We expect that team members can compare both states. That is, they have the ability to identify discrepancies in their actual common ground. Clark (1996, p.49) stipulates that individuals have the ability to notice that their common ground falls short of some information [4], even though some discrepancies can go unnoticed.

Proposition 1: Team members identify the required and actual states of common ground to compare them.

Coordinating Effectively: Making Aligned Individual Contributions

This comparison can lead to three different coordination processes. Should they be equal, we suggest team members have all the required knowledge to perform aligned individual contributions and thus coordinate effectively with each other [5;6]. In fact, by having the required common ground, all team members will know what to do, what to expect from others, what to do for them, and know that everyone is able to perform their contribution. They thus fulfill the requirements for a joint activity as defined by Clark (1996, p. 203). Proposition 2: In teams whose actual state of common ground is equal to the required state, members will make aligned individual contributions (i.e. coordinate effectively).

Coordinating Ineffectively: Making Misaligned Individual Contributions

Conversely, both states (actual and required) can be different due to common ground shortages [8]. Common ground shortages can be of two natures. First, the team might miss some knowledge. Some team members might have individual knowledge that the others don't share or they may consider that others know about some information when in fact they do not. This leads to confusion about who knows what and is what Klein et al. (2005) refer to as “common ground breakdowns”. Second, the team might have erroneous knowledge. In this case, team members may have conversed about relevant information but did not attach the same understanding to it and failed to detect the misunderstanding. This is what Clark (1996, p. 195.) refers to as “undetected misconstruals” and Mastrogiacomo et al. (2014) as “perception gaps”. If teams fail to detect the common ground shortages [9;10], each team member’s actions will be based on erroneous or missing knowledge on the four requirements. If their knowledge is not accurate in one or several of the four requirements, we believe their individual contributions are misaligned and they coordinate ineffectively [10;11].

Proposition 3: Team members who do not detect common ground shortages make misaligned individual contributions (i.e. coordinate ineffectively).

From Effective to Ineffective Coordinating: Monitoring

Nevertheless, teams can detect the gap between the required state and the actual state of common ground, i.e common ground shortages. In that case, they will engage in monitoring the gap [13] either by completing missing information (ground missing information) (Klein et al. 2005, p.19) or repairing misunderstandings (corrected misconstruals) (Clark 1996, p.195). In fact, individuals who detect a discrepancy in their common ground immediately engage in correcting it (Clark 1996, p.49). The correct piece of information will then modify the team’s actual state of common ground [14]. Both states are then again compared. Teams who detect such gaps can engage in this loop of comparing and monitoring [4-8-9-13-14] as long as their actual state of common ground does not equal the required state. Team members will then make individual contributions that are aligned and coordinate effectively.

Recursion of the Process: Continuous Interacting and Contributing

Moreover, we do not consider that coordinating is a definite endeavor, done once and for all. Team members should always have recursive knowledge on the right joint objectives, commitments, resources, and risks. But as time project passes, new information emerges (e.g. change of user expectations, reduced staff due to changed budget constraints). Team members then need to engage in the process again [7;12] to ground, update, and (potentially) monitor the new piece of information. In addition to information emerging from the team’s environment, the team itself is a source of relevant information. More specifically, we consider that the individual contributions are a source of relevant information. As soon as either aligned or misaligned contributions are made, they need to be grounded [7;12] according to our process model as they impact the joint commitments (what participants expect from each other). On the
one side, making aligned contributions informs the team that all members have understood and respect the right joint objectives, commitments, resources, and risks. On the other side, if the contributions that have been made are wrong or incomplete, it informs the team on what the member will be able to contribute in the future.

Proposition 4: When coordinating (whether effectively or ineffectively), team members ground and update their individual contributions and any other new relevant information.

Scope and Boundaries

Our process model frames coordinating joint activities (1) in IS teams in (2) cooperative settings. Our model focuses on coordination at the level of a team of individuals that share a joint purpose (or objective) and does not specify how coordination between different teams occurs (e.g., cross-department coordination). Also, the process model applies to activities for which individuals do not necessarily have stable and clear joint objectives, commitments, resources, and risks. Moreover, our process model addresses only cooperative settings, that is team members have clear cooperative intentions and are committed to the joint purpose (or project) (Clark 1996, p.203). Our model does not frame how teams coordinate in uncooperative settings.

Future Validation and Methodology

To test our propositions, we must perform conversation analysis in order to account for the fundamental linguistic activities involved in coordination. As it has proven very difficult to record conversations of IS project team meetings, we have turned to the AMI Meeting Corpus, an open-source database of meeting recordings (Carletta et al. 2006; McCowan et al. 2005). The AMI Meeting Corpus was developed with the initial aim of coping with the methodological problem of analyzing a great enough range of corpuses occurring in the same set of conditions, so that results can easily be compared and generalized. The corpus is made of 100 hours of meeting recordings comprising naturally occurring and scenario-based meetings. The latter consist of four-member teams holding four meetings in one day with the goal of designing a new remote. Each member is assigned a different role: project manager, industrial designer, user interface designer, and marketing expert. All members are provided with role-specific information by a virtual coach during their individual times between meetings. For example, after the kick-off, the marketing expert is provided with a market report while the industrial designer is provided with a list of the basic components of a remote and their layout.

This corpus proves very valuable for several reasons. Firstly, it contains recordings of 25x4 meetings (4 meetings for 25 teams) within the scenario-based projects. Therefore, it allows for greater rigor in the qualitative analysis as cross-case and within-case analysis can be performed extensively. Secondly, the four members are provided with different individual knowledge which proves particularly interesting for our analysis of how teams coordinate around common ground. Moreover, the corpus has already been transcribed. Finally, the corpus has been used in hundreds of studies thus far. Even though they are mostly in the fields of signal processing, language analysis, and computational language, this large set of studies confirms the robustness and the rigor of the dataset. Our unit of analysis will be the speech acts, focusing on the broader scope of sentences rather than words. Table 3 hereafter describes the speech acts that will be singled out in the conversations and how they participate in testing the propositions.

Conclusion and Contributions

The model we have presented serves as a basis for developing appropriate analyses of team coordination related to common ground. The reliable and valid analysis of these concepts is essential not only to test the four propositions we have developed but also advance our understanding of team coordination.

Currently, the model offers three main advantages to researchers and practitioners interested in IS team coordination. Firstly, one of the main contributions of our process model on team coordination is that it explains how coordination concretely occurs, while previous theoretical studies have missed or ignored such explanations. Our model stipulates that teams perform two main activities to coordinate: interacting (which implies: grounding, updating, and monitoring) and contributing (making individual contributions). While the purpose of our process model is mostly explanatory in that it explains how
different streams of actions lead to effective or ineffective coordinating, it is easy to see and further to test its prescriptive power. In fact, to coordinate, team members must converse to a great extent. The purpose of conversation is to prepare team members to coordinate. Therefore, we hypothesize that the more and the better team members converse about the joint objectives, commitments, resources, and risks, the more likely they are to coordinate effectively.

<table>
<thead>
<tr>
<th>Table 3 – Data and Validation Methodology for each Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposition</td>
</tr>
<tr>
<td>Proposition 1: Team members identify the required and actual states of common ground to compare them.</td>
</tr>
<tr>
<td>Proposition 2: In teams whose actual state of common ground is equal to the required state, members will make aligned individual contributions (i.e. coordinate effectively).</td>
</tr>
<tr>
<td>Proposition 3: Team members who do not detect common ground shortages make misaligned individual contributions (i.e. coordinate ineffectively).</td>
</tr>
<tr>
<td>Proposition 4: When coordinating (whether effectively or ineffectively), team members ground and update their individual contributions and any other new relevant information.</td>
</tr>
</tbody>
</table>

Secondly, we complement Clark’s theory with two main additions. The first advancement is that Clark’s work does not provide a process for coordination in the likes of our model. Secondly, Clark’s work does not include the notion of effectiveness, a key concern in management. Our process model differentiates between effective and ineffective coordination by stipulating that in the former there are no common ground shortages unlike the latter. That is, the effectiveness of coordination is greatly determined by the conversations (i.e. grounding, updating, and monitoring) that occur before individuals make their contributions. Moreover, we augment Mastrogiacomo et al. (2014)’s study that initially instantiated Clark (1996)’s concepts to project management. As such, their study used a variance perspective as it revealed that the state of a team’s common ground is positively correlated with coordination effectiveness. Our study adds the activities that lead to and stem from common ground.

Most importantly, our process model proves useful for practitioners as they can focus on a few fundamental activities to ensure that their teams are coordinating effectively: interacting (grounding, updating, and monitoring) and contributing (making their individual contributions). In fact, we have previously noted that contributions from current literature leaves practitioners too puzzled with an increasing amount and variety of coordination mechanisms. Using our process model, team members or managers can simply focus on making sure they effectively ground and monitor common ground so that they can perform aligned contributions. We thus frame the content of meetings and conversational activities.
Figure 1 – The Process Model of Coordinating in Team
References

