IT Outsourcing’s Role in China’s Economic Growth

Gregory D. Larosiliere
Baylor University, gregory_larosiliere@baylor.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2010

Recommended Citation
http://aisel.aisnet.org/amcis2010/569

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in AMCIS 2010 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
IT Outsourcing’s Role in China’s Economic Growth

Gregory D. Larosiliere
Baylor University
gregory_larosiliere@baylor.edu

ABSTRACT
This paper investigates the relationship between economic growth and Information Technology (IT) outsourcing. By analyzing the dynamics of IT outsourcing, the paper will further investigate various financial-related factors to assess their relationship to economic growth. With regards to IT outsourcing, prior research involving technology and outsourcing in China have provided clues to suggest a possible correlation to economic productivity. The paper will also explore past research in the area of Information and Communication Technology (ICT) expenditures, Foreign Direct Investment (FDI), and the Labor Market to determine their function in economic growth. A conceptual model was developed to illustrate the postulated relationship between IT outsourcing and economic growth. The model details a three-period lifecycle of the causal relationship between IT outsourcing and economic growth.

Keywords
IT outsourcing, FDI inflow, Economic Growth, China, IT investment, ICT

INTRODUCTION
In the last decade, China has experienced a great deal of economic growth since joining the World Trade Organization (WTO). It has modernized their economy by implementing various economic reforms, continual investment in infrastructure, and the elimination of trade barriers. These changes along with the evolution of IT outsourcing has led to China becoming the preferred host for foreign corporations wanting to offshore their IT services. As the IT outsourcing market in China continues to grow, the “productivity paradox” debate appears to loom over the possibility of IT outsourcing being a probably cause in China’s economic growth. The study will evaluate the economic contributions of IT outsourcing while attempting to find linkage to China’s economic growth.

Upon China’s accession to the World Trade Organization, it was required to release restrictions on trades and institute reforms to its economy (World Trade Organization, 2001). The WTO agreement required China to eliminate export subsidies, trade barriers in the agriculture, lower tariffs on products, participation in Information Technology Agreement (ITA), eradicate quotas and licenses restrictions, phase out restrictions on various forms of services, and ensure state-owned enterprises make purchases and sales based on commercial considerations (US-China Business Council, 2000). Through trade liberalizations, China has allowed foreign corporations to conduct business with less restrictions and this resulted in the growth of foreign direct investment inflows. Ultimately, corporations began outsourcing their IT services to China as they were experiencing economic growth. With a growing economy, the Chinese government continues to invest in China’s information and communication technology (ICT) infrastructure giving outside investors a solid communication network for their IT services. Aligned with an expanding economy, China is also able to maintain a low unemployment through government expenditures and acquisition of employment opportunities from overseas investors interested in outsourcing their business operations. Through trade liberalization and government expenditures, China has been able to sustain economic productivity, labor market growth, and continual investment in IT infrastructure. Through these determinants of economic growth, two main components continue get the attention of researchers: IT and Outsourcing. Technology allows for overseas business to conduct business transaction with China and, with the modernization of China’s economy, Outsourcing allows for businesses to cut costs while maintaining the quality level of their goods and services. These two areas are associated with economic productivity and labor market growth. Through outsourcing, corporations are contributing to the labor market while making direct investments that contributes to economic growth.
In the WTO Agreement, China agreed to participate in the Information Technology Agreement that will eliminate tariffs on computers, telecommunication equipment, semiconductors, computer equipment, and other technology products (US-China Business Council, 2000). In other words, the ITA established trade liberalization for technology goods that allowed China and other ITA members to compete against one another in the high-technology industry (Anderson and Mohs, 2010). With the elimination of tariffs, a few potential events can positively impact China’s economy. First, the elimination of trade tariffs for computer-related equipment would make their products less expensive and more attractive for international corporations interested in purchasing high technology products. As a result, the agreement would increase high technology exports and potentially increase demand for labor to keep up with demand. This could possibly lead to an increase in the labor market. Second, the reduction in price followed by a demand for computer-related exports accompanied by fewer restrictions for investors to conduct business in the country can lead to an increase in outsourcing from outside international tech companies desiring a more cost-effective means for the production and distribution of their technology products. In a similar case, Anderson and Mohs (2010) suggested that an increase in FDI inflows was a major contributor in the acceleration of China’s export as multinational corporations began establishing their operations in China. Through this example, IT, FDI, and outsourcing appears associated with China’s economic growth and ITA provides a possible linkage between IT outsourcing and economic growth at the micro-level. This would further suggest that IT outsourcing may play a role in economic growth through the following factors: labor market productivity, ICT investment, and foreign direct investment.

To address the relationship between IT outsourcing and economic productivity, the paper will investigate the contributing factors associated with IT outsourcing and economic growth. The study will contribute to the body of knowledge by investigating outsourcing’s contribution to the ‘boom’ in economic productivity at the country-level while answering the call for future research to involving IT outsourcing (Dibbern, Goes, Hirschheim, and Jayatilaka, 2004). The significance of this study will address the question about IT outsourcing and its impact on the host country’s economy. This area of IT outsourcing research has been discussed but rarely studied in-depth. For that very reason, the need to conceptualize the relationships and elements associated with IT outsourcing and economic growth will tackle the issue of technology investment and understand the results of learning and honing technology to increase overall productivity. Based on evidence from the academic literature of several disciplines and reports from governmental and non-profit agencies, this paper develops a conceptual model of the relationship between IT outsourcing and economic growth in China. According to this model, three primary factors determine the relationship between China’s economic growth and IT outsourcing: (1) ICT investment, (2) foreign direct investment, and (3) labor market conditions. The goal of this paper is to explore the channels through which IT outsourcing can lead to improvements in economic productivity. First, the paper will define economic growth and analyze findings from prior research to construct a basis for economic productivity. Second, we will examine previous research on IT outsourcing and explore plausible relationships with various aspects of economic growth. Third, the paper will consider the impact of ICT expenditures on economic growth and how ICT investments impact IT outsourcing. Forth, the paper will examine the relationships between IT investment, foreign direct investment, and labor productivity and their interactions with IT outsourcing and economic growth. With regards to the labor productivity, the paper will examine research on its relationship with employment growth. These factors will be posited as probable causes of China’s economic growth, influenced by IT outsourcing. A conceptual framework (Figure 1) has been developed to illustrate the causal relationship between IT outsourcing and economic growth. Along with the conceptual framework, there is a conceptual section developed to present the model in a realistic scenario and demonstrate how the process runs across the projected time periods. Earlier research will be reviewed to contribute and support the factors in the study and further explain the relationship between China’s economic growth and IT outsourcing.

![Figure 1. Conceptual Framework](image-url)
The paper is organized as follows. In section 2, we provide the literature review on Economic growth, IT outsourcing, and IT investment. In section 3, we discuss the conceptual contributions of labor market productivity, IT outsourcing, and IT investment. Section 4 describes the scenario. Section 5 provides the research conclusion.

Literature Review

Economic Growth

In order to understand what constitutes economic growth, the paper investigates various economic development research articles and how economic growth is measured. From the literature articles, a variety of methods to measure economic growth is based upon the concepts and methods that are used to interpret the change in the economy (Figure 2 & 3). Research articles have measured economic growth with two different measures: growth of the economy and size of the economy per capita (Solow, 1956; Barro, 1991; Kuznet, 1955). Some of the articles have found that annual change in the Gross Domestic Product (GDP) may not be the only variable associated with growth in the economy (Barro, 1991; Kuznets, 1955). The Solow growth model accounts for the growth in productivity by estimating the following changes: technological change, capital, and labor. Mankiw, Romer, Weil (1992) expand the Solow Model by adding human-capital accumulation to capture economic growth. He reported significant measures in his model and proved that GDP per working age person performance is impacted by human capital. Barro (1991) has suggested that the growth rate of real per capita is positively related to human capital. Human capital plays a role in the endogenous economic growth of a country and this would imply that investment would have an impact on economic growth (capital deepening). Aside from free international trade, Romer (1990) found that greater stock of human capital led to faster economic growth.

In terms of growth periods, some researchers have found that economic growth starts in different stages and comes from demand, supply, and production (Rostow, 1959). Solow (1956) developed a model that predicts, assuming growth convergence, that countries reach different steady states. This takes into account the possible adjustment of components of productivity growth, such as capital and labor. Considering capital and labor, IT outsourcing would also require some adjustments before productivity can be realized. Rostow believed that economic growth is driven by capital, labor accumulation and technological change. The conditions of economic growth must be seen through the increase in wealth per capita increase, otherwise, we can assume, economic prosperity was selectively rendered to certain groups of the population (Kuznets, 1955). Similarly, Rostow (1959) suggested a few preconditions must be satisfied before economic “take off”, but was guided by the evolution of the society and economy. These preconditions may appear to mirror that of the modernization of China’s economy and their continual investment in the society (i.e. Education). On the other hand, Wilson and Purushothaman (2003) notes that large economic growth among developing countries may be exaggerated because the developing countries are playing “catch up” with the rest of world. To further explain the concept, they provide two reasons for that developing countries experiencing experience large economic growth: (1) developing countries have less capital per worker than developing developed countries and the return on capital is higher, (2) developing countries use technologies once available in developed countries to ‘catch up’ with developed countries practice. The confusion between “take off” and “catch up” may be the lack of solid linking between the technology associated with growth and overall economic growth. The studies make clear of what constitutes growth and how it is achieved, but technology factors that spur economic growth need to be expanded to understand the economic and technological factors surrounding IT outsourcing. Although IT outsourcing allows for the training of individuals with new skills and the accumulation of IT Capital through investments in new technology (hardware and software), the population of the country is only as valuable as the openness of the country’s economy.
IT Outsourcing/Offshoring

IT outsourcing has been a very important topic in the area of Economics, Politics, and Information Systems because this new way of doing business comes from innovation and the progress of technology. Hirschheim, Loebbecke, Newman, and Valor (2005) have defined IT offshoring as the migration of all or part of the development, maintenance and delivery of IT services to a vendor located in a country different from that of the client. Along with the innovation of technology, the declining cost of technology has allowed for developing countries to communicate with the rest of the world. Hitt and Brynjolfsson (1996) have researched IT value and have found IT investment can impact profitability through the theory of competitive advantage. IT outsourcing is being used to provide corporations the cost-cutting advantage to remain competitive in their industry and the investment in IT can be seen as a strategic play in their respective industry. IT outsourcing creates activity across different economies and with the use of information and communication technologies, companies are able to communicate and remain productive. In a unique study that details a two-stage offshoring arrangement, Olsson, Conchuir, Agerfalk, and Fitzgerald (2008) develops a theoretical model based on the experiences of software development sites acting as a bridge to client and host. They have suggested that outsourcing may evolve to a multistage arrangement where the host to the client may act as manager to other layers of outsourcing. This arrangement not only increases economic activity among affiliated countries, but also shows how relevant the investment in infrastructure is to IT outsourcing. Aside from the economic contributions of IT outsourcing, the study shows how the two-stage arrangement involves the creation of labor employment across two different economies. Economic contributions of IT outsourcing can be seen through the creation of jobs and rise in overall labor productivity.

IT outsourcing has been adopted by many foreign investors as a mean to cut cost and focus on their core competencies (Dibbern, Goles, Hirschheim, and Jayatilaka, 2004). In an interesting study involving offshoring and host selection, Gefen and Carmel (2008) found that a client’s business history with a provider was a strong indicator into whether they would be picked again as providers to the client. The client’s behavior may reflect an attempt to avoid a “learning” curve that would delay productivity if a new provider were to be chosen. Researchers have found that the outsourcing of IT may not be as “green” on the other side as one would believe. Rottman and Lacity (2006) have suggested that IT Offshoring should be utilized safely seeing that there is a “learning” curve managers would have to undertake. They suggest managers should employ a variety of metrics (costs, quality, timeliness, and risk) when they are assessing performance. Also, the long-term goals of the corporation considering IT Offshoring of specific services should assess the necessary education population, talent diversity, solid international communications, and population size of the country (Eltschinger, 2007). Davis, Ein-Dor, King, and Torkzadeh (2006) have suggested that foreign corporations interested in offshore outsourcing should consider their core competencies and the cost advantage of contracting with the prospective country. They also need to make certain the contracting groups are experts in the outsourced service to ensure they are benefiting from this business transaction. These lessons are coming from a firm-level analysis, but the same scenarios can play out at the country-level.

Evaluating three different management objectives for IT investment, Weill (1992) found that Strategic IT investment, which is an investment made to gain a competitive advantage, had a weak association to lower performance. Mata, Fuerst, and Barney (1995) found that IT alone is not the source for sustained competitive advantage, but it is the solution for corporations to maintain their competitive advantage. To remain competitive in today’s global market, Kettinger,
Larosiliere IT Outsourcing’s Role in China’s Economic Growth

Grover, and Guha (1994) suggested that external factors can have influence on a firm’s sustainability. These external factors, like environment, can also impact IT Offshoring because corporations must find ways to position themselves strategically for the future by cutting costs and taking advantage of economies of scale. In a recent study, Rai, Maruping, and Venkatesh (2009) identifies drivers for offshore information system project success and how organizational and interpersonal cultural differences impacts the success of offshore IS projects. The study found that various internal factors (Kettinger et al., 1994) impede the progress and success of offshore IS projects. By addressing these issues (i.e. cultural differences), organizations can avoid these common IS project setbacks. Similarly, IT outsourcing to countries with different cultures would also need to be addressed to avoid potential confusions and setbacks. Along with external factors, firms need to be aware of the “learning” curve that exists for managers because they will need to understand and learn the new processes before an increase in productivity can be expected (Rottman and Lacity, 2006). Once the new processes are learned, foreign corporations can increase overall productivity while focusing on their core competencies (Dibbern et al., 2004). The same rationale applies at the country level as IT outsourcing’s impact on economic growth may not be immediate due to the lag in productivity driven by the “learning” curve.

ICT Investment

Over the past few years, many researchers have considered ICT investment’s (Figure 4) impact on economic growth for both industrialized and developing countries. IT investment’s ability to increase productivity has been heavily debated since it was first mentioned that IT investment didn’t yield increased productivity (Solow 1987). In prior studies, researchers have investigated the impact of IT from the firm level (Brynjolfsson and Hitt, 1996; Gordon, 2000; Oliner and Sichel, 2000) and country level (Dedrick, Gurbaxani, and Kraemer, 2003; Dewan and Kraemer, 2000; Kraemer and Dedrick, 2003). Dedrick et al. (2003) broadly define IT investment as investments in both computers and telecommunications, and is related hardware, software, and services. Solow (1987) claimed that technology was present everywhere, except in productivity. In fact, some researchers have found that IT investment does yield productivity, but that the measurements used to calculate productivity in past research were flawed (Brynjolfsson, 1993). Brynjolfsson and Yang (1996) have found that the “mismeasurement” of outputs and inputs impedes some of the prior research and led to some confusion about ICT investment’s impact on economic growth.

![ICT Expenditures (% of GDP)](image)

Source: The World Bank Information and Communication Development

Figure 4. ICT Expenditures (% of GDP)

Some studies have utilized the Cobb-Douglas function to measure the impact that IT investment has on productivity (Dewan and Kraemer, 2000; Brynjolfsson and Hitt, 1996). This mathematical formula has been used to measure the productivity of countries and firm performance. This formula does not take into account the lag of time and productivity. Jorgenson and Stiroh (2000) have used the growth accounting method to estimate the impact of ICT investment on productivity, but they were measuring productivity for a fully industrialized economy (United States). Also, their study measured the impact of investment across aggregate years, whereas most of the reviewed literatures were focused on annual growth. This approach to measuring economic growth comes with a few setbacks: (1) business cycle changes will not be captured, (2) growth lags can skew the results of aggregate years, and (3) changes in political regimes can impact results. To mitigate these setbacks, the research method should incorporate growth lags in the model and include variables that affects the relationship between IT investment and economic growth.
Moreover, Brynjolfsson (1993) argues that IT investment impact on productivity is affected by the mismanagement of information and technology. This mismanagement of IT, in part, relates to the improper usage of technology and the ineffectiveness technology has on productivity. Along with the problems plaguing economic productivity, Brynjolfsson (1993) believes the “productivity paradox” issue exists because of past research exclusion of “learning and adjustment” lags. In another study, Brynjolfsson, Malone, Gurbaxani, & Kambil (1994) found that the impact from investment in IT was realized after a couple of years. In fact, a time period that covers the lag in IT investment would best assist in measuring its impact on productivity. In addition, by accounting for lag and adjustment in the calculation, proper assessment of IT investment’s impact on economic growth can be achieved. And, using a similar approach to measure IT outsourcing’s impact on economic growth can also lead to accurate estimations. Lastly, understanding the significance of time lags and how it is used to measure economic productivity helps to configure the potential time duration necessary for evaluating the relationship between IT outsourcing and economic growth.

Conceptual Contribution

Foreign Direct Investment and Economic Growth

With emphasis on Economic contribution, we consider economic growth’s relationship with Foreign Direct Investment (FDI). Alfaro (2004) would view FDI as having an “ambiguous” relationship with economic growth, but recognizes the relationship between FDI and outsourcing. The relationship, as examined by Alfaro (2004), would exist due to a company’s current infrastructure that would allow it to take advantage of FDI to produce growth (firm level). At the country-level, the ambiguous relationship between FDI and economic growth also requires an established infrastructure before productivity can be realized. Mah (2010) and Ang (2008) have analyzed the causal relationship between FDI and economic growth and have found that economic growth impacted FDI inflows. Mah (2010) found that economic growth, before economic reform, was impacted positively by FDI inflows. Ang (2008) found that financial development is associated with increased FDI and that it acts as a mechanism for assisting in adopting new technologies. With investor’s attraction to countries with high economic growth rates, a bi-directional relationship with FDI may be present. This would suggest that China’s economic growth and FDI inflows may mutually impact one another, but that would require testing the assumption across different time periods. IT outsourcing related FDI would show single directional relationship with economic growth as only actual investment can be accounted for. FDI inflow’s impact on growth may require time before actual growth is realized due to necessary infrastructure and standards accompanying the investment.

P1: FDI inflow influence positively influences Economic growth.

IT investment and Economic Growth

With emphasis on Economic contribution, we consider economic growth’s relationship with IT investment. There have been economies researched where the investment in ICT would increase annually, but the economy would remain stagnant (Daniele, 2006). Danielle (2006) found that “technological delay” was the cause of ICT’s minimal impact on productivity and that the decline in TFP had attributed to labor productivity. In a study conducted by Jorgenson and Vu (2005), they examined IT’s impact on economic growth and were able to calculate the total factors productivity for time periods 1989-1995 and 1995-2003 (Table 1). The sources of GDP growth consisted of Capital (ICT and Non-ICT), Labor, Quality, and TFP. Even though China continues to experience growth, we see that the growth actually declines for period 1995-2003 in comparison to 1989-1995. ICT Capital contribution also increases with Non-ICT Capital but overall GDP Growth declines for that same period. This raises the question about ICT investments contribution to GDP growth, but also suggests that ICT investments may contribute in different areas of economic growth. As IT outsourcing continues to grow, the overall productivity of the economy does not. The inner workings of productivity may be influenced by the accumulation of capital per working unit from the total factors productivity (TFP), but growth of the employment rate without the increase of the TFP can depress the growth rate (Daniele, 2006). This would suggest that investment in ICT may not yield immediate productivity and that economic growth may be present after certain periods of time. After certain period of time, IT investment can impact labor productivity that can lead to economic growth. A deeper look into IT outsourcing and its relationship with ICT investments would provide a better view of its role in China’s economic growth.

P2: ICT investment positively influences Economic growth.
Larosiliere IT Outsourcing’s Role in China’s Economic Growth

Table 1. Sources of Output Growth: 1989-1995 vs. 1995-2003

Source: Jorgenson and Vu (2005)

Labor Market Productivity and IT

IT outsourcing establishes employment opportunities in the host country. With an established infrastructure, the level of productivity and perhaps the time duration to experience productivity may depend on the labor market. Dedrick et al. (2003) believes labor productivity growth, growth in output per worker, is a measure of the efficient use of resources to create value. Assuming technology is among the causes of economic growth, IT outsourcing’s ability to increase the labor market and overall labor productivity would suggest that a causal chain for economic growth could be present. In other words, economic growth may, in fact, be indirectly impacted by IT outsourcing and technology may play a pervasive role in the progress of these two components. Labor market productivity is analyzed through two distinct features: labor productivity (Figure 5) and labor market growth (Figure 6). China’s labor market growth provides evidence of a healthy economy as it is able to produce both the increase in employment (job opportunities) and the availability of qualified labor. Jha and Golder (2008) argue that labor market productivity is only part of the economic performance puzzle. They suggest that the labor market regulations require reforms to allow for flexibility and that the change will lead to economic performance increases. They isolate the labor market from investment and consider the deregulation of the labor market as the component to economic performance. With China’s economic reforms, their labor market continues experience low unemployment as their economy continues to grow. Though the research provides a compelling argument for labor market regulations and protective provisions for labor, the research does not provide evidence of such change resulting in the immediate increase in economic productivity. This would suggest that labor reform may not bring immediate productivity and perhaps will experience productivity increases over a given time period depending on the country (industrialized or developing).

P3: IT Outsourcing positively influences Labor market productivity.
P4: IT Outsourcing positively influences Economic Growth.
P5: Labor market productivity positively influences Economic Growth
Scenario – Summary of Concept

The purpose of this section is to apply the concept in a real world situation and make clear of important interactions that take place in the IT outsourcing – Economic growth process. In the first time period, Company A begins looking for potential host country to outsource their IT Division. As mentioned earlier in the article (Eltshinger, 2007), a company looks at a countries’ ability to communicate with the outside countries. The country’s IT infrastructure is developed through the respective government’s expenditure in Information and Communication Technology (ICT). Based upon the country’s history of continual investment in their ICT infrastructure, Company A is able to make a decision to proceed with Country A and foreign direct investments (FDI) begin to inflow into the country’s economy. Through FDI inflows, the country is able to purchase physical building, implement new technology, and hire qualified employees to operate their IT division. With the new investment, the company is able to train new employees on the company’s operation, as well as the new information technology that they will begin utilizing in their day-to-day operation. In the second time period, IT outsourcing is established and operational while increasing the Labor Market. With an established infrastructure and implemented IT outsourcing system, labor productivity increases over time after the “learning” period and this leads to increase Labor Market Productivity within the country. As Labor Market productivity increases along with the government’s continued investment in the country’s ICT infrastructure, this leads to an increase Country A’s economic growth in the third time period. The growth can be measured in percentage change in real GDP and real GDP per capita.

CONCLUSION

In conclusion, the research analysis would suggest that there is a positive correlation between the IT outsourcing and Economic Growth, but the study would suggest other factors are involved in China’s economic growth. We examined IT outsourcing and explored plausible relationship with various determinants of economic productivity. In the study, we find that the impact of ICT expenditures on economic growth appears present, but that incompatible research methods rendered inconsistent results. In our study, we found that FDI, ICT investment, and Labor market positively impacts both IT outsourcing and economic growth. While the research would prove inconclusive that economic productivity is directly impacted by IT outsourcing, it would suggest that IT outsourcing directly impacts labor market growth. By analyzing the increases in the labor market, partially induced by IT outsourcing, we are able to identify how labor market productivity, investment in technology, and growth of employed population can lead to economic growth. Along with economic growth, we are able to see how a strong economy can create new jobs, invest in technological infrastructure, and encourage foreign direct investments.

However, the results of our investigation are limited by the available data necessary to measure precisely the impact IT outsourcing has on economic growth. IT outsourcing would have been measured by the number of IT-related projects and amount of initial investment (labor and capital), but this type of data at the country-level was unavailable. The study was hampered by the lack of research investigating IT outsourcing’s impact at the country-level and suitable research method for this topic isn’t established. We also found that foreign direct investment associated with IT outsourcing would have been helpful to the investigation, but the specific data was unavailable. We believe this study contributes to the body of knowledge and encourages researchers to consider the economic contributions and implications of IT outsourcing. We hope the research
and conceptual model spurs future research in IT outsourcing. Lastly, future research investigating the social and cultural attributes as moderators to economic productivity, labor market growth, and IT outsourcing will prove to be of significant value as the IT outsourcing research track matures.

ACKNOWLEDGMENTS

I would like to thank Dr. Cindy Riemenschneider for all her guidance, thoughtful advice, and wonderful feedback. Also, I would like to acknowledge Dr. H. Stephen Gardner for his contribution to various sections of this manuscript. While I thank these individuals for their guidance and feedback, I fully acknowledge that any errors, omissions or inaccuracies that remain are solely my responsibility.

REFERENCES

