Improving Judgmental Forecasts with DSS Support

William Remus
University of Hawaii

Marcus O'Connor
University of New South Wales

Kai Lim
City University of Hong Kong

Follow this and additional works at: http://aisel.aisnet.org/amcis2001

Recommended Citation

http://aisel.aisnet.org/amcis2001/54

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in AMCIS 2001 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
IMPROVING JUDGMENTAL FORECASTS WITH DSS SUPPORT

William Remus
University of Hawaii
remus@cba.hawaii.edu

Marcus O'Connor
University of New South Wales
M.OConnor@unsw.edu.au

Kai Lim
City University of Hong Kong
iskl@cityu.edu.hk

Abstract

Although widely used, judgmentally generated forecasts are generally less accurate than forecasts generated by statistical modeling techniques. Thus, it would appear to be worthwhile to provide DSS support aimed at improving judgmentally generated forecasts. The two best researched and widely advocated methods for supporting judgmental forecasts are task feedback and judgmental bootstrapping feedback. In this experiment, we compared the effectiveness of the two DSS based on those methods in improving judgmental forecasts. Consistent with the Feedback Intervention Theory of Kluger and DeNisi (1996), DSS task feedback led to better forecasts than DSS judgmental bootstrap feedback. This was true in terms of the Brunswik Lens model measures of achievement, knowledge, and consistency and in terms of forecast accuracy. This occurred both in stable environments and when special events (unusual one-time events requiring adjustments to the forecasts) arose.

Keywords: DSS, judgmental forecasts, statistical forecasts, task feedback, judgmental bootstrapping feedback, feedback intervention theory, Brunswik Lens Model