December 1995

An Execution Model for Process Mapping and Process Automation in a Distributed Business Environment

Edward Cheng

DEC and Stanford University Research Liaison

Follow this and additional works at: http://aisel.aisnet.org/pacis1995

Recommended Citation
http://aisel.aisnet.org/pacis1995/32

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in PACIS 1995 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
An Execution Model for Process Mapping and Process Automation in a Distributed Business Environment

Edward Cheng
DEC and Stanford University Research Liaison
USA

Abstract
To be a leader in today's competitive, complex, and worldwide market, it is critical that a corporation is able to describe, analyze, and streamline its mission critical business processes. In this session, we propose the OFLOW model and solution for BPR to accomplish process mapping and process automation. This solution has demonstrated to result in shortening process cycles by orders of magnitude. It encourages teamwork, reduces cycle idle time, enhances group communication, and increases productivity.

With the OFLOW model, customers first use a graphical tool to capture the four dimensions of a business process into a flow map; these include the dimension of process control, organization and role resolution, application integration, and management of data. Secondly, we provide an open architecture workflow environment for customers to integrate their applications into a distributed, client-server environment. A workflow engine then takes the process map and manages the flow by distributing the different tasks of the business process to the various workers within the company. As a result, people no longer suffer from miscommunications and inefficiency which are associated with time consuming inter-office mail, unstructured email system, and idling in-trays. Rather, they take full advantage of the network and computing system to manage the continual flow of work.