AN ASSESSMENT OF M-HEALTH IN DEVELOPING COUNTRIES USING TASK TECHNOLOGY FIT MODEL

Amina Tariq
The University of New South Wales, amina.tariq@unsw.edu.au

Shahriar Akter
The University of New South Wales, sakter@uow.edu.au

Follow this and additional works at: http://aisel.aisnet.org/amcis2011_submissions

Recommended Citation

http://aisel.aisnet.org/amcis2011_submissions/121
AN ASSESSMENT OF M-HEALTH IN DEVELOPING COUNTRIES USING TASK TECHNOLOGY FIT MODEL

Amina Tariq
Australian Institute of Health Innovation
The University of New South Wales
amina.tariq@unsw.edu.au

Shahriar Akter
Australian School of Business
The University of New South Wales
s.akter@unsw.edu.au

ABSTRACT

Health challenges present arguably the most significant barrier to sustainable global development. The introduction of ICT in healthcare, especially the application of mobile communications, has created the potential to transform healthcare delivery by making it more accessible, affordable and effective across the developing world. However, current research into the assessment of mHealth from the perspective of developing countries particularly with community Health workers (CHWs) as primary users continues to be limited. The aim of this study is to analyze the contribution of mHealth in enhancing the performance of the health workers and its alignment with existing workflows to guide its utilization. The proposed research takes into account this consideration and aims to examine the task-technology alignment of mHealth for CHWs drawing upon the task technology fit as the theoretical foundation.

Keywords

mHealth, Task-Technology Fit, Developing countries.

INTRODUCTION

mHealth is transforming healthcare in developing countries by improving the quality of care. It has significantly facilitated information access, enhanced workflow, and promoted the evidence based practice to make informed and effective decisions directly at the point of care. It has dramatically improved the decision making and production processes of health and healthcare by ensuring the right information to the right person and at the right time.

Though mHealth is transforming healthcare in developing countries, it carries a number of risks including the risk of using technology that results in unintended widening of the gap in health status and knowledge between different sectors of the population; thereby increasing rather than addressing health inequity and digital divide (Khoja et al., 2008). mHealth researchers have agreement on the fact that sustainability of these initiatives is only possible by taking actions based on evidence generated by their rigorous assessment (Archer, 2009; Yu et al., 2008 Krishna et al., 2009; Kahn et al., 2010; Blaya et al., 2010). The assessment and outcomes evaluation needs to be designed from the outset and integrated into the implementation process to adequately inform the potential impact of mHealth based interventions to facilitate the decisions on their scope and scalability (Shields et al., 2005; Mechael, 2006). The primary assessment consideration therefore is to analyze the contribution of mHealth in enhancing the performance of the health workers and its alignment with existing workflows to guide its utilization (Iluyemi et al., 2007).

To date the studies in mHealth assessment have primarily focused on the acceptance of mHealth solutions by physicians and nurses with confinement to the hospital settings in the developed world (Chatterjee et al., 2009; Holden & Karsh, 2010; Junglas et al., 2009). There is lack of evidence on how mHealth is beneficial in connecting spatially distributed co-workers and enabling more efficient patient care (Prgomet et al., 2009; Chan & Kaufman, 2010). None of the existing frameworks has
been designed to assess suitability of mHealth in meeting the information and communication needs of front-line providers of health care; the CHWs (Kahn et al., 2010). This research therefore aims to fill this gap and develop mHealth assessment framework from the perspective of CHWs. The aim is to determine and analyze the individual; task, technology and context related factors that impact the mHealth adoption as well as performance of the CHWs. As in most of the developing world, mHealth is in its pilot stages this research will facilitate the developing countries on identifying the factors that need to be catered for building the capacity of the CHWs without which the innovation offered by mHealth will not translate into an embedded and sustainable benefit for the developing world (Dubow, 2006).

This research aims to take into account that simply focusing on CHWs perceptions of technology is not enough to prove their acceptance and success in the use of mHealth technologies (Lucas, 2008). To meet the contextual demands and critical nature of healthcare work; mHealth solutions need to fit with the tasks structures and enable performance optimization to prove their potential for sustainability (Zhou et al., 2010). Therefore; this research seeks to analyze the determinants of CHWs’ performance taking into account the new mHealth enabled work settings and individual capabilities of the CHWs to match them, in the remote and rural environments of the developing world.

LITERATURE REVIEW

This section aims to describe the context and vision of the proposed research. It begins with an overview of the research context placed in the domain of mHealth solutions in the developing countries and goes on to consider the prospective role of Community Health Workers (CHWs) in the enablement of mHealth in the developing world. This leads to a development and validation of the TTF based conceptual model for mHealth in developing countries from the perspective of CHWs.

mHealth in Developing Countries

Electronic health (e-health) is defined as the embryonic convergence of wide reaching technologies like the internet; computer and wireless technologies enabling direct access to healthcare providers and services including primary care; health education and wellness (DeLuca & Enmark, 2000; Brommey, 2003). Researchers identify ‘mHealth’ or Mobile Health as an inextricable subset of e-health in which the provision of health-related services is made via mobile Information and communication technologies (MCITs) (Mechael, 2009; Ivatury et al., 2009; Krishna et al., 2009; Vodafone, 2009). The conceptual background of mHealth lies in the vision of Pervasive Health care which is defined as the ability to realize health care to anyone; anytime and anywhere by removing geographic; time and other restraints while increasing both the coverage and the quality (Varshney, 2005, 2007). Mobile based health care technologies are considered both emerging and enabling for their vast scope of applications as summarized in Figure 1 (Kuzeimsky, 2005; Jen & Wung, 2010; Finch, 1999; Ammenwreth et al., 2000; Lu et al., 2005; Prgomet et al., 2009). mHealth therefore is considered not only as technological innovation but as a paradigm shift; promising healthcare improvement around the globe (Curioso & Mechael, 2010).

![Figure 1: Perceived Benefits of mHealth (Mechael, 2006)](image)

MCITs are one of those rare set of technologies where industry has reported a reverse trend in digital divide (Krishna et al., 2009; Banks & Burge, 2004; Sutherland, 2009). In developing countries the importance of mHealth systems is manifolds
because they could act as a catalyst for providing basic health services to the patients who live in remote and rural areas; where health care facilities are either non-existent or of extremely poor quality (Curioso & Kurth, 2007; Kahn et al., 2010). The concept of remote and rural environments is defined as an environment in which the majority of population adheres to the culture; social norms and religion of their ancestors – leaving no room to accept change in them. Consequently; the environment is invariant in time and space. Its users show significant amount of resistance to advancements in the society. Their cognitive faculties are not evolved to formulate their requirements or expectations from a given system (Hsiao, 2009; Blaya et al., 2010).

Community Health Workers- Prime stakeholders of mHealth

In remote and rural areas of the developing world, Community Health Workers (CHWs) are the main and sometimes only link between the patient and other social services (Fitch & Adams, 2006). CHWs embrace a variety of community health aides selected; trained and working in the communities from which they come. Although it is hard to generalize the profile of CHWs on a global scale a common ground in the definition is that CHWs must respond to local societal and cultural norms and customs to ensure community acceptance and ownership (Lehmann & Sanders, 2007). The foremost responsibility of CHWs is to provide primary health care services including support for vulnerable groups; such as the elderly; less mobile and newly born infants (Fitch & Adams, 2006; Haines et al., 2007). CHWs vary greatly in literacy levels and receive little refresher training; therefore require reliable and timely information access to support task accomplishment (Sherwani et al., 2007; Walsh et al., 1997). Despite their constant information & communication requirements, CHWs are often working alone and have little or no access to up to date information and opportunities to exchange experience with colleagues (Dubow, 2006). Researchers believe that mobile technologies can enable real time access to key clinical information; expertise and patient administration to facilitate the CHWs in successful execution of their healthcare tasks (Sherwani et al. 2007; Fitch & Adams 2006). Realizing the potential inherent in mHealth solutions; mHealth is gaining swift progress in the developing world; as reported in 2008 alone over a dozen mHealth applications have been implemented or are in trial stage to revamp the health infrastructure in remote and rural environments with CHWs as the prime users (Curioso & Kurth, 2007; Vodafone, 2009; Ivatury et al., 2009).

However; enabling mHealth acceptance by CHWs requires overcoming a number of social and acceptance challenges which include (1) winning hearts and minds of CHWs; (2) taking into account the cultural issues such as the use of language and illustrations; privacy and trust(3) alignment with CHWs processes & tasks; (4) reliable data collection; (5) setting up and configuring the devices; and doing their calibration and maintenance; (6) maintaining a synchronous interactivities with the physicians (7) accessibility issues (8) the presentation medium and (9) Affordability (Niman et al., 2006; Mechael, 2009). It is critical to understand such calling preferences and patterns in order to understand the natural role of mobile phones within the CHW’s work settings to gain the desired benefits (Kaplan, 2006; Haines et al., 2007; Mechael, 2009). Further; attributed to their varying skill set and vulnerable nature; there is a requirement of continuous support and training for CHWs to maintain the effective contribution (Lehmann & Sanders, 2007). Therefore; a critical challenge for remote and rural environments is the technology transfer taking into account the cultural considerations and customizing the mHealth solutions with locally developed content supported by appropriate technologies in alignment with the conditions and realities of their application context (Lacal, 2003).

Existing mHealth Assessment Framework

Prior to establishing a theoretical ground for proposed research a detailed literature survey was undertaken to analyze the state of the art of mHealth assessment its suitability for context of this research (Table 1). The review indicated that evidence of mHealth’s success in clinical practice and research is still evolving. The common observation is the agreement on the inherent complexity of mHealth assessment. There is an acceptance of the notion that mHealth has very diverse stakeholders with starkly differing needs; therefore one-size-fits-all is a failed model for mobile computing in healthcare (Basole & Rouse, 2009, Myers & Baskerville, 2002). As discussed earlier, negligible mHealth research has been done focusing on developing countries particularly in remote practice settings with CHWs as the primary users (Chan & Kaufman; 2010). The existing literature has tendency to view the mobility of any device as inherently beneficial without clear evidence demonstrating how, why or in what circumstances this mobility provides value (Baumgart; 2005). Another major limitation of existing studies is focus primarily on Physicians; ignoring other types of mHealth professionals (especially community health workers in developing world); their relationships and distinct context of use.

Researchers have emphasized on need for more evidence-based approach to the use and evaluation of mobile technologies to understand if, and when, they are useful in supporting clinical practice (Kaplan & Harris-Salamone, 2009). Researchers (Klecun & Cornford, 2005) emphasize that IS innovations, are socially and historically conditioned, and any evaluative activity has to both reflect and respond to such conditions. They recommended adoption of critically informed methods.
especially in context of healthcare settings that encompasses technical, individual and organizational characteristics, as well as a societal perspective to address the long-term prospects of a project, that is, its sustainability, as well as changes to work practices.

<table>
<thead>
<tr>
<th>Study</th>
<th>Model</th>
<th>Evaluated Constructs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barret et al. (2004)</td>
<td>TAM</td>
<td>PDA Usage & Perceived Needs</td>
</tr>
<tr>
<td>Yi et al. (2006)</td>
<td>TAM, TPB & IDT</td>
<td>Behavioral Intention based on PU, PEOU, Personal Innovativeness, Subjective Norm, Image, Perceived Behavioral Control</td>
</tr>
<tr>
<td>Wu et al. (2007)</td>
<td>TAM & IDT</td>
<td>Behavioral Intention based on PU, PEOU, technical support and training, MHS Self Efficacy and Compatibility.</td>
</tr>
<tr>
<td>Yu et al. (2009)</td>
<td>TAM</td>
<td>User acceptance based on PU, PEOU, data quality, work flow and cost</td>
</tr>
<tr>
<td>Vishwanath et al. (2009)</td>
<td>TAM</td>
<td>Actual use of PDA based on PU, PEOU, attitudinal landscape, adoption readiness.</td>
</tr>
<tr>
<td>Yusof et al. (2008a)</td>
<td>IS success</td>
<td>System Quality, Information Quality, Service Quality, System Use, User Satisfaction, Organizational Structure, Organizational Environment and Net Benefits.</td>
</tr>
<tr>
<td>Chatterjee et al. (2009)</td>
<td>IS success</td>
<td>System quality, Nature of work, Service quality, Usage, Satisfaction and Net Benefits</td>
</tr>
</tbody>
</table>

Table 1. Review of major mHealth studies

Rationale for Task-Technology Fit Perspective

To fill the above mentioned gaps in mHealth assessment research, proposed research aims to draw on the theoretical perspectives of Task Technology Fit (TTF) theory (Goodhue, 1995, Goodhue & Thomson, 1995). Figure 1, which argues that technology needs to be willingly accepted as well as fit well with the users and their corresponding tasks to prove its effectiveness (Lee et al., 2007; Sun et al., 2009). The ability of TTF to predict performance is argued to be its vital contribution in contrast to Technology acceptance model (TAM) (Davis, 1989) which focuses on usage prediction only (Goodhue et al., 2000). Moreover in contrast to TAM, TTF focuses on utilization rather than intention to use which does not necessarily lead to actual use (Dishaw & Strong, 1998). Therefore to analyze adoption in specific contexts researchers have emphasized application of TTF rather than reliance on TAM (Benbasat & Barki’s, 2007).

![Figure 1: Basic TTF model (Goodhue, 1995)](image-url)
TTF can be the guiding perspective for mHealth researchers to identify the key elements of a behavioral model of IS use in emerging context of mHealth in the remote and rural areas of the developing countries (Rai et al., 2002). There is a need to contextualize TTF constructs to cater for with the unique issues offered by the dual administrative structure of healthcare in these environments. However contextualization needs to be general enough to encompass the complete view of healthcare settings (Chiasson & Davidson, 2004). This would facilitate then in eradication of actual barriers in the success of mHealth initiatives and realization of ubiquitous healthcare, for conservative environments (Kaplan, 2006). TTF has been combined or extended with famous IS models like TAM to explain user adoption of technology (Dishaw & Strong, 1999). It has been used as the baseline model to explain user’s evaluation of blogs, web usage, evaluate synchronous and asynchronous group communication, ERP System adoption and Artificial Intelligence Systems (Shiraniet al., 1999, D’Ambra and Wilson, 2004a & 2004b, IPKawai, 2005, Wongpinunwatana et al., 2000). Recently the TTF has been employed for studying the adoption of mobile based systems in different industry sectors including insurance, mobile banking and mobile based location systems (Lee et al., 2007, Zhou et al., 2010 & Junglas et al., 2008). In our study, a synthesis of TTF research developed in the context of mobile technologies was undertaken to draw its relevance to the perspective of mHealth as presented in Table 2.

<table>
<thead>
<tr>
<th>Study</th>
<th>Applied Domain</th>
<th>Key Research Questions</th>
<th>Methodological Details</th>
<th>Major Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al., 2007</td>
<td>Insurance Industry</td>
<td>Evaluate applicability of PDA in insurance industry</td>
<td>Case Study</td>
<td>Position Experience, Cognitive Fit and Computer Self Efficacy major fit factors for Insurance industry</td>
</tr>
<tr>
<td>TTF model extended with a new construct of “Individual Differences”</td>
<td></td>
<td>Determine the cognitive fit’s impact on mobile adoption of insurance agents</td>
<td>Survey of a US based multi-national insurance company</td>
<td>PDA suitable mostly for post-contract customer services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine the Technological and Task factors for selecting appropriate mobile solutions for insurance agents</td>
<td>Sample Size: 238 (Insurance Agents)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analysis using Multiple Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou, 2010</td>
<td>Mobile Banking User Adoption</td>
<td>Determine if TTF impacts the User adoption as well as Performance Expectance. Remaining similar to (Goodhue et al. 1995 & Venkatesh et al. 2003)</td>
<td>Positivist Approach</td>
<td>Performance Expectancy, TTF, Social Influence and facilitating conditions have significant effect on user adoption</td>
</tr>
<tr>
<td>“TTF & UTAUT”</td>
<td></td>
<td>Survey conducted in China</td>
<td>Sample Size: 250 (Students + Professionals)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Convenience Sampling</td>
<td>SEM Analysis using LISREL</td>
<td></td>
</tr>
<tr>
<td>Junglas et al., 2008</td>
<td>Mobile Locatable Information Systems</td>
<td>Determine if ideal TTF will lead to higher individual performance than over-fit.</td>
<td>Positivist Approach</td>
<td>Subjects perceive differences between under and ideal fit conditions when tasks include localization components</td>
</tr>
<tr>
<td>TTF model revised with location sensitivity and mobility measures</td>
<td></td>
<td>Determine if ideal TTF will lead to higher individual performance than under-fit.</td>
<td>Wireless Lab Experiment with 112 subjects (IS students) in US</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Four Technology Treatment groups</td>
<td>Non-Parametric Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Parametric Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delbert et al. 2009</td>
<td>Construction Industry</td>
<td>Determine process performance factors from information processing perspective</td>
<td>Positivist Approach</td>
<td>Positive effect of Mobile technology depends on the task complexity as well as on the used technology</td>
</tr>
<tr>
<td>Task, Technology & Information characteristics and TTF</td>
<td></td>
<td>Impact of mobile technologies on the above relationship</td>
<td>Scenario based 3D lab Experiment with 20 Subjects</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analysis using PLS techniques</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Summary of major mHealth studies on TTF
The above evidence on application of TTF confirms Zigurs's (1998) assertion that there is no generally accepted definition or standard for task technology fit it needs to be extended, modified or integrated with different theories and constructs based on its study context (Cane & Mcarthy, 2009).

Conceptual Model

In order to conceptualize a task technology fit model for mHealth perspectives, this study began by investigating commonly cited factors that influence TTF theory in mHealth settings. As such, it identified seven factors that influence task technology fit in mHealth context (Table 3). These seven factors are CHW’s task characteristics, individual characteristics, technology characteristics, work environment characteristics, perceived task technology fit, mHealth utilization and performance. Based on the following conceptualization of TTF Model in mHealth context, the preliminary conceptual model of the study is presented in Figure 2. However it is vital to clarify that this model will serve just as the initial theoretical premises of the research and will be revised with the iterative cycles of research execution. Based on the conceptual model depicted in Figure 2, the research propositions and their supporting theories have been presented in Table 4.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHW’s Task Characteristics</td>
<td>Tasks are action taken by CHWs to turn input into output. Task characteristics are those features of the task that move CHWs to rely heavily on mHealth technologies.</td>
</tr>
<tr>
<td>CHW’s Individual Characteristics</td>
<td>Individual characteristics are the capabilities of CHWs which affect how well and easily they use mHealth technologies to execute their tasks.</td>
</tr>
<tr>
<td>mHealth Technology Characteristics</td>
<td>Technology characteristics describe the features of the complete set of tools including the mHealth applications; enabling infrastructure and services that enable task execution by CHWs.</td>
</tr>
<tr>
<td>Work Environment Characteristics (Contextual)</td>
<td>Work Environment Characteristics describe the social and cultural influences as well as the facilitating conditions of the CHWs work environment which influence CHWs perceptions on suitability of mHealth in their work settings</td>
</tr>
<tr>
<td>CHW’s Perceived Task Technology Fit</td>
<td>The correspondence between CHWs task requirements, their individual capabilities and the functionalities of the provided mHealth technologies</td>
</tr>
<tr>
<td>CHW’s mHealth Utilization</td>
<td>Utilization represents the actions of CHWs using mHealth applications to complete their tasks. It represents whether mHealth technologies are used or not and does not relies only on usage duration.</td>
</tr>
<tr>
<td>Performance</td>
<td>Performance implies improved efficiency; effectiveness and quality in CHW’s task accomplishment.</td>
</tr>
</tbody>
</table>

Table 3: Conceptualization of Constructs (based on Goodhue & Thomson, 1995; Gebauer et al., 2007)
Table 4: Summary of preliminary research propositions

<table>
<thead>
<tr>
<th>No.</th>
<th>Propositions</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>CHW’s perceptions of task technology fit are influenced by differences in their individual characteristics.</td>
<td>Goodhue & Thomson 1995; Gebauer & Tang 2008</td>
</tr>
<tr>
<td>P2</td>
<td>CHW’s perceptions of task technology fit are influenced by the characteristics of the employed mHealth technology.</td>
<td>Goodhue et al. 2000, Wu et al. 2007, Lee et al. 2007, Venkatesh et al. 2003</td>
</tr>
<tr>
<td>P3</td>
<td>CHW’s perceptions of task technology fit are influenced by the characteristics of tasks being performed.</td>
<td>DeLone & McLean 2003, Parasuraman 2005, Varshney 2005</td>
</tr>
<tr>
<td>P4</td>
<td>CHW’s perceptions of task technology fit are influenced by the characteristics of their working environment (context).</td>
<td>Venkatesh et al. 2003, Staples & Seddon 2004; Zhou et al. 2010</td>
</tr>
<tr>
<td>P5</td>
<td>The perceived task technology fit influences the utilization of mHealth technologies by CHWs.</td>
<td>Goodhue 1998, Junglas et al. 2009</td>
</tr>
</tbody>
</table>
RESEARCH METHODOLOGY

Researchers believe that a single research approach cannot encompass the three main criteria of research including generalization; control and measurement of research variables and existential realism (McGrath; 1981). Therefore the selection of research design is driven by aims and objectives of the research.

Research Methodological Approach

As this research aims to study mHealth utilization by CHWs in the developing world which is a contemporary issue and cannot be studied outside its occurring research context (Ivatury et al.; 2009) therefore, case study is the appropriate strategy (Myers, 1997; Walsham, 1993). Case study strategy is chosen for its ability to provide profound insights into this specific application context of mHealth (Darke et al., 1998). Further the lack of control of the researcher on the events occurring in the research environments (mHealth in remote or rural environments) also justifies the suitability of case study (Yin; 1994).

Case study strategy is known in literature as a triangulated research strategy (Yin, 1994; Pare and Elam, 1997; Eisenhardt, 1989). It is acknowledged as one of the most common research approaches in IS domain; attributed to its ability to analyze multiple perspectives with in a specific context employing diverse set of data collection methods (Orlikowski & Baroudi, 1991; Ritchie et al., 2003). The case study does not represent an empirical sample; its aim is to achieve analytic generalization rather than statistical generalization (Yin, 1994). The phenomenon under study varies with social-cultural idiosyncrasies and environmental complexity. Therefore it’s inappropriate to directly test findings of other research in this context (Darke et al., 1998). In context of this research, positivist case methodology is adopted which is recommended by researchers in context of health informatics (Pare, 2002, Cavaye, 1996). A positivist case study can generate both qualitative and quantitative types of data and the two types inform each other (Bryman, 2001, Gillham, 2000). In the following sections, this study aims to discuss the case study design to investigate the proposed research questions.

Multiple Case Study Design

Yin (1994) explains that a single case can provide a full and rich description of a rare phenomenon and contribute to knowledge. However, it cannot verify findings that might be the result of idiosyncrasies of the research setting (Cavaye; 1996). In context of this research as the aim is to understand the impact of remote or rural environments in the developing world with varying social; cultural and political context a single case design will make it harder to achieve theoretical saturation. In contrast; the multiple-case design enables cross-case comparison and verifies findings derived from different cases. This research therefore investigates the task technology alignment of CHWs in remote or rural environments by employing multiple case studies to triangulate evidence and verify research findings.

Triangulation of evidence from multiple will significantly improve the theoretical saturation of this study; therefore contributing validity of mHealth assessment research where only a handful of studies tend to look for complementing or congruent findings by applying of multiple methods on primary data (Ammenwerth, et al. 2003; Jaspers, 2008). Further; in context of remote or rural environments aim is to dig deeper and identify the barriers in the scalability of mHealth pilot projects. For this purpose it is vital to collect different kinds of data from CHWs. Adoption of triangulation will yield somewhat different results due to sensitivity of each method to the context in which it is being applied. The identification and analysis of these inconsistencies can be illuminative and will offer deeper insight into the relation between the methods and variables under study. Therefore triangulation seems a viable methodology to conduct the proposed research (Hesse & Schneiderman, 2007).

The choice of the number of case studies depends on the nature of investigation and availability of resources (Patton, 1990). In the proposed research time and resources are constrained to take a large number of case studies. Presently there are only limited numbers of mHealth projects in the remote or rural environments (Vodafone, 2009); with most of them in their pilot stages. Also getting access to the CHWs and conducting field studies requires overcoming various social barriers with serious privacy and ethical concerns.

Embedded Case Design

To conduct this research within time and resource limitations, multiple case studies within one country, that is, Pakistan will be examined. Case studies will be based on three distinct pilot mHealth projects in different regions of Pakistan. These mHealth projects are under progress in different provinces of Pakistan having different cultures and health care infrastructures. Further the underlying mHealth technologies for each project are different (Ivatury et al., 2009; Vodafone,
In this sense, each mHealth project is identified as a single case and all the cases are embedded in one case of setting: remote or rural environments in Pakistan.

Unit of Analysis

In context of this research, each case is identified as a mHealth project for remote or rural environments involving its utilization by CHWs. Maintaining the focus on CHWs; this research does not examines impact of mHealth on other stakeholders however their impact on CHWs adoption of mHealth would be catered for as part of the research.

Research Process Design

Figure 3 presents the phase wise design of the research. Initial phases focus on streamlining the preliminary framework and establishing research protocol. This will be followed by a cyclic data collection and analysis phase (Miles & Huberman, 1984, 1994). Last two phases will focus on evaluating and revising the framework revising the framework based on the analysis of the obtained data. As this research adopts multi-case study approach number of iterations of phases may vary in different case studies.

![Figure 3: Research process design (adapted Freidman & Wyatt (1997); Kaplan (1997))](image)

Data Collection Approach and Methods

The data collection approach of the research selected to ensure that the research follows protocols of the case study research (Klein & Myers 1999). It is important to clarify that the data gathering techniques can be different for different stages and evolving requirements of the research.

CONCLUSION

The proposed research aims to examine the task-technology alignment of mHealth for CHWs drawing upon the task technology fit as the theoretical foundation. Based on extensive literature review, a preliminary conceptual framework is presented to investigate the task technology alignment of mHealth for CHWs and examine its impact on their performance. By successively building upon the initial framework this research proposes a guiding set of methods in the form of a methodology. This research takes into account the socio-technical nature of mHealth domain, therefore, our proposed research methods will allow the examination of relationships between social and technical subsystems prevailing in the developing world in order to facilitate the assessment of mHealth.
REFERENCES

6. Blaya; J.A.; Fraser; H.S.F. & Holt; B. (2010) *E-Health Technologies Show Promise In Developing Countries; Health affairs*; vol. 29; no. 2; pp. 244-251.

29. Haines; A.; Sanders; D.; Lehmann; U.; Rowe; A. K.; Lawn; J. E.; Jan; S.; Walker; D. G.; & Bhutta; Z. (2007) Achieving child survival goals; Potential contribution of community health workers. The Lancet; 369(9579); 2121-2131. doi:DOI: 10.1016/S0140-6736(07)60325-0
43. Lucas; H. (2008) Information and communications technology for future health systems in developing countries. Social Science and Medicine; 66(10); 2122-2132.

48. Myers; M.D.; (1997) Qualitative research in information systems; MIS Quarterly; 21(2): 241-2

54. Pare; G.; Elam; J. J. (1997) Using Case Study Research To Build Theories Of IT Implementation. in Information Systems And Qualitative Research: Proceedings Of The IFIP TC8 WG 8.2 Conference On Information Systems And Qualitative Research; Philadelphia; Pennsylvania; 542-569.

58. Sutherland; Ewan; Counting Mobile Phones; Sim Cards & Customers (13th March 2010). Available at SSRN: http://ssrn.com/abstract=1468847

60. Shields; T.; Chetley; A.; & Davis; J. (2005) ICT in the health sector: Summary of the online consultation: infoDev

62. Varshney; U. (2005) Pervasive Healthcare: Applications; Challenges and Wireless Solutions; Communications of the Association for Information Systems; 16(3); 2005; 57-72

64. Walsham; G.; Robey; F. and Sahay; S. (2007) Foreword: special issue on information systems in developing countries. MIS Quarterly; 31(2): 317-326

