2008

Developing a Taxonomy for the Understanding of Business and IT Alignment Paradigms and Tools

Anabel Gutierrez
Brunel University, anabel.gutierrez@brunel.ac.uk

Jorge Orozco
Brunel University, jorge.orozco-vargas@brunel.ac.uk

Anastasia Papazafeiropoulou
Brunel University, anastasia.papazafeiropoulou@brunel.ac.uk

Alan Serrano
Department of Information Systems and Computing, Brunel University, alan.edwin.serrano-rico@brunel.ac.uk

Follow this and additional works at: http://aisel.aisnet.org/ecis2008

Recommended Citation

Gutierrez, Anabel; Orozco, Jorge; Papazafeiropoulou, Anastasia; and Serrano, Alan, "Developing a Taxonomy for the Understanding of Business and IT Alignment Paradigms and Tools" (2008). ECIS 2008 Proceedings. 199.
http://aisel.aisnet.org/ecis2008/199

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in ECIS 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
DEVELOPING A TAXONOMY FOR THE UNDERSTANDING OF BUSINESS AND IT ALIGNMENT PARADIGMS AND TOOLS

Gutierrez, Anabel, Brunel University, School of Information Systems, Computing and Mathematics, Uxbridge, Middlesex, UB8 3PH, UK, anabel.gutierrez@brunel.ac.uk

Orozco, Jorge, Brunel University, School of Information Systems, Computing and Mathematics, Uxbridge, Middlesex, UB8 3PH, UK, jorge.orozco-vargas@brunel.ac.uk

Papazafeiropoulou, Anastasia, Brunel University, School of Information Systems, Computing and Mathematics, Uxbridge, Middlesex, UB8 3PH, UK, anastasia.papazafeiropoulou@brunel.ac.uk

Serrano, Alan, Brunel University, School of Information Systems, Computing and Mathematics, Uxbridge, Middlesex, UB8 3PH, UK, alan.edwin.serrano-rico@brunel.ac.uk

Abstract

The alignment of information technology with business objectives tends to be a managerial priority in modern organisations. Thus, practitioners and researchers have proposed different approaches to assess this relationship, some following similar approaches whilst others proposing different ones. The variety of approaches proposed, however, has created confusion about the applicability and context in which these approaches can be used. Thus, aiming to tackle this challenge, this paper proposes a taxonomy that organises and compares studies of alignment assessment in terms of their theoretical constructors and their practical use. The taxonomy is build around two research sources: a) a review of the literature of alignment and b) a framework for comparing IS methodologies. The structure of the taxonomy permits insights into studies by means of six theoretical (objective, nature of strategy, paradigm, dimension, type of measurement, model) and six practical constructors (audience, scope, output, techniques, product, target). The taxonomy is then applied to six assessment studies. The benchmarking analysis of these helped to identify their theoretical basis and its practical use, and confirms the need for more practical mechanisms to assess alignment. Additionally, it becomes apparent that process perspectives and social understanding of alignment are the two main paradigms for alignment.

Keywords: strategic alignment, alignment assessment, IS planning
1 INTRODUCTION

Many organisations realise that aligning information technology and business objectives, commonly referred to as alignment, is a managerial priority for solving organisational and business challenges (Ives Mandviwalla 2004, Luftman 2000, Tallon & Kraemer 2003). The competitiveness of the market has produced organisations to look for a better way of understanding how to implement IT projects that boost their business strategies (Weill & Broadbent 1998). Despite the fact that this area of research increases in relevance researchers and practitioners have not reached an agreement on the different ways to approach this challenge. This disagreement can be seen by the wide variety of studies that have emerged by proposing alternative approaches to research alignment. These commonly presume a wide debate to answer underlying questions such as how can organisations achieve alignment? and how can organisations assessed their alignment?. In the literature, research into alignment has been covered as a complete roundtrip process which involves three indistinct stages: assessing, achieving, and maintaining alignment (Luftman 2000, Avison 2004). Most research, though, does not identify any differences away from these stages even though each one might contribute independently to the field. As a consequence, some studies do not specifically advocate an adequate mean of measurement, whilst this is considered one of the steps towards achieving alignment. The different views make the comparison of insights more complex if considered that an alignment approach should satisfy the organisational context by ad-hoc measures (Zee 2001). Today, few studies exist which collate current studies of alignment assessments by using mechanisms of comparison. This lack of research suggests that practitioners and researchers not only struggle to identify these studies but also point towards a laborious selective process for the most valuable approach to fulfil individual interests. There are no convincing mechanisms for evaluating the type of assessments that more adequately satisfy specific organisational needs. This process normally depends on the judgement of practitioners and researchers. In addition, the literature fails to compare studies taking into account their philosophical paradigms, which may permit benchmarking them and, eventually, expose their capabilities. This paper aims to contribute to the IT and business alignment process by clarifying alignment assessments through the content of their underlying constructors (the authors refer as constructors to the theoretical and empirical components involved in alignment assessments). In doing so, a taxonomy for current alignment assessments is proposed to benchmark these studies. The proposed taxonomy structure has theoretical and practical capabilities to support comparative mechanisms of analysis. Insights into alignment assessments are achieve by means of six theoretical and six practical constructors.

To guide the reader, the rest of the paper is organized as follows: the next section presents an overview of underlying constructors of alignment. This is followed by an explanation of two research sources for the development of the taxonomy structure. Then, the taxonomy structure is described and tested by using six studies. Finally, the findings are summarized in the conclusion together with limitations of this research and recommendations for further research.
Alignment is a phenomenon that focuses on the complexity of organisational relationships given by the integration of IT and business objectives (Weill & Broadbend 1988, Henderson & Venkatraman 1999, Ciborra 1997, Smaczny 2001). In most cases, this relationship has been subject to different interpretations and according to the context behind the particular research attained. This research recognises that alignment research might be advanced by exposing such different interpretations. For instance, many alignment studies have exposed their differences against others by establishing their own boundaries. By reviewing some of the most cited articles in the alignment literature it became apparent that some of these interpretations have been indicated. For instance, Chan et al. (1998) use Mintzberg (1998) to classify common understandings of organisational information systems (IS) strategies in order to suggest which strategy shapes their own research. The discussion is centred on two definitions: a) intended strategy, defined as not current, but the formal strategy susceptible to support future or past strategy; and b) realised strategy which reflects current and undertaken strategy. Reich and Benbasat (1996) also recognise alternative interpretations but they are focused on dimensions of alignment. They argue that alignment research should consider the difference between social and intellectual dimensions. The social dimension is “the content of information technology and business plans that are internally consistent and externally valid” (Reich and Benbasat 1996 p.55) and intellectual dimension occurs when “the information systems and business executives understand each others objectives and plans” (Reich and Benbasat 1996 p.55). In a more recent study, Reich and Benbasat (2000) extend the scope of social dimension by including the influence of four factors (shared domain knowledge between business and IT executives, IT implementation success, communication between business and IT executives, communication between business and IT planning process) and suggesting two paradigms as a consequence of the outcome of achieving alignment. These paradigms imply that the output of implementing alignment can be understood by either considering a “state” or a “process”. A state view involves alignment as a fixed output and the effect of itself. A process view is centred on intangible but planned activities which are performed dynamically through the roundtrip process of achieving alignment. For instance, Tallon (2007) has suggested a process-oriented perspective on the alignment of IT and business strategy. This approach looks for an alignment between IT and individual process rather than IT and business strategies. In addition to these two paradigms, different measuring interpretations of the IT-business alignment have been indicated in the literature of alignment. For instance, Hales and Cragg (1996) examine two ways of measuring alignment: a matching measure based on the difference between two items which consequently represents the extent of the IS-business relationship. The literature suggests that alignment approaches have been demarked by alternative interpretations to describe their underlying constructors. Types of strategy evaluated (Chan et al., 1998), alignment dimensions (Reich & Benbasat 1996), alignment paradigms (Reich and Benbasat 2000), and alternative interpretations for measuring alignment (Hale & Cragg 1996) have been discussed as key references to confine the scope of alignment assessments (see table 1). These interpretations not only clarify the foundation behind current alignment assessments but also provide insights into the research diversity of alignment. Moreover, these interpretations allow comparing mechanisms if they are taken reference to compare other studies. To enable such mechanisms in this research, the research gap is tackled by means of proposing a classification scheme which could be used as a reference to compare underlying constructors of alignment assessments.
3 METHODOLOGY OF THE TAXONOMY DEVELOPMENT

Even though there are various classification schemes in the literature, a taxonomy was chosen for this research as it offers comparative advantages and contributes towards new research (Carper & Snizek 1980, Mezzich & Salomon 1980, McKelvey 1982). The proposed taxonomy relates to “a scheme that partitions a body of knowledge and defines the relationships among the pieces. It issues for classifying and understanding the body knowledge” (IEEE 1986). For this research, the body of knowledge was provided by collecting the data of different studies available in the literature, then generalising their concepts. Each selected study became a source of theoretical and practical data to be filled out into the taxonomy structure. There were no preconceived ideas regarding the intended structure. The first step was concentrated to develop the taxonomy structure based on elements able to characterise alignment assessments. Two sources of research were undertaken to define the taxonomy structure: investigating IS comparison frameworks and evaluating common and underlying constructors of alignment assessments in the literature.

3.1 First research source for the taxonomy development: reviewing common constructors in the literature of alignment assessments

This research source focused on defining constructors for the taxonomy structure by means of reviewing literature of alignment. The design of the taxonomy began empirically by finding common constructors within current alignment assessments. In doing so, a selection process was performed in the current literature to identify representative articles concerning alignment assessments. E-resources were used as the primary means to carry out such selection. Initially, studies focused on alignment were searched. The web of science”, part of “ISI web of knowledge service for UK education”, and its associated database “science citation index expanded” provided the searching resources. This database indexes 5900 major journals across 150 scientific disciplines (ISIknowledge 2006) and permits a review of wider selection of

<table>
<thead>
<tr>
<th>STUDY</th>
<th>UNDERLYING CONSTRUCTOR</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAN ET AL.</td>
<td>Types of strategy evaluated</td>
<td>Intended strategy: no current, but formal strategy susceptible to support future or past strategy</td>
</tr>
<tr>
<td>(1998)</td>
<td></td>
<td>Realised strategy: reflects current and undertaken strategy</td>
</tr>
<tr>
<td>REICH & BENBASAT</td>
<td>Alignment dimensions</td>
<td>Intellectual dimension: focuses on content of planning approaches (methods and techniques). This dimension evaluates the content of IT and business plans if they are internally consistent and externally valid (Reich and Benbasat 1996)</td>
</tr>
<tr>
<td>(1996)</td>
<td></td>
<td>Social dimension: focuses on people or factors involved in creating alignment. This dimension includes mutual understanding and commitment to the business and IT mission, objectives and plans (Reich and Benbasat 2000)</td>
</tr>
<tr>
<td>REICH & BENBASAT</td>
<td>Alignment paradigms</td>
<td>Process perspective: focuses on the integration of IT and business as a process</td>
</tr>
<tr>
<td>(2000)</td>
<td></td>
<td>State perspective: focuses on the integration of IT and business as cross-sectional data and analyses states of such integration</td>
</tr>
<tr>
<td>HALE & Cragg</td>
<td>Types of interpretations to measure alignment</td>
<td>Matching measure: based on the difference between two measures (Hale and Cragg 1996)</td>
</tr>
<tr>
<td>(1996)</td>
<td></td>
<td>Moderation measure: reflects a synergy between two measures (Hale and Cragg 1996)</td>
</tr>
</tbody>
</table>

Table 1 Review of underlying constructors of alignment
databases. The database was used during the first two weeks of July 2006 to compile a collection of relevant literature whose title or abstract contains the keyword “strategic alignment”. Fifty-three articles were found and then ranked according their research impact (the number of times a study has been cited). These articles were also categorised according a criteria which included three objectives: a) propose tools or instruments of assessment, b) implement empirically their instruments or tools and c) hold relevant keywords such as “measure”, “measurement”, “measuring”, “assessing” or “assessment” in their abstract or title. After the revision, a group of thirty-one articles was compiled from which their references and citations allowed drill down other relevant articles. Therefore, new articles were added to the group according to whether their keywords in abstracts and titles included “alignment”, “strategic information systems planning” or “information systems planning”, and their impact would agree with the aforementioned criteria. Finally, articles were classified into two groups according their objective(s). Firstly, a group that include studies that focus on alignment to support its relevance, the impact of IT on business performance, and its relation with financial benefits or its business IT value. Secondly, a second group with studies that helps on understanding the alignment phenomena, and measures alignment to help organisations to improve their current situation; see table 2 for the figures of each group. Finally, nine articles with assessing objectives were compiled to constitute the first source of the taxonomy development. This group was the bases to identify such constructors for the taxonomy structure.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>OBJECTIVE</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevance, impact and benefit of alignment</td>
<td>Focus on alignment to support its relevance, the impact of IT on business performance, and its relation with financial benefits or its business IT value</td>
<td>22</td>
</tr>
<tr>
<td>Measure alignment to improve organisations</td>
<td>Help on understanding the alignment phenomena, and measures alignment to help organisations to improve their current situation</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

Table 2 Review of underlying components of alignment

3.2 Second research source for the taxonomy development: selecting a comparison framework

The second research source was concentrated on investigating a comparison framework for current alignment assessments. Since developing successful information systems has been closely related to the use and implementation of methodologies (Avison & Fitzgerald 2006, Ollie 1991, Tagg 1983) and methodological approaches have been related to justify current studies of alignment, research activities were dedicated to searching a framework with comparing capabilities for IS methodologies.
According to Avison and Fitzgerald (2006), there are three main categories of rationale that organisations and individuals have used to justify the adoption of a particular methodology. They state that the aim of a methodology should be oriented to develop a better end product, a better development process, and a standardised process. In addition, they have been pointed out that IS methodologies should include a philosophical view, because methodologies intrinsically have applicability limitations as a consequence of those assumptions made by their own authors. The limitations of current IS methodologies mark an additional issue when decision-makers start a selecting process for a methodology that should fit their individual requirements. This process normally might include tailoring activities since small number of methodologies can satisfy ideally all expected requirements. By considering this, principles to implement alignment assessments or IS methodologies share similar rationales. The evaluation process as well as the elements involved in alignment assessments or methodologies hold similarities that might be exposed by using comparison techniques. The framework provided by Avison and Fitzgerald (2006) proposes seven basic elements of comparison (see figure 1) to benchmark underlying elements of IS methodologies. As main advantage, this framework allows to remove any element according to the researching needs. Moreover, this framework offered theoretical and practical comparing capabilities that also can be applied to studies. This framework was selected as the second development resource for the taxonomy but adapted to the characteristics of alignment assessments.

4 THE TAXONOMY STRUCTURE

Most alignment assessments have been envisaged by using strong theoretical background, but not many advocating practical capabilities (Avison & Powell & Wilson 2004). For this research it was a criterion to include and evaluate both aspects. The taxonomy structure was visualised with theoretical and practical capabilities that includes two substructures; a substructure with constructors concerning the theoretical background behind the study and a substructure with constructors concerning the practicability of the study. The theoretical substructure depicts six constructors (aim objective, nature of strategy, paradigm, dimension, type of measurement approach & background model), as can be seen in table 3. Four constructors, nature of strategy, paradigm, dimension and type of measurement, were included into this substructure as a result of the first research source of development. In addition, elements such as objective and model were taken from the framework for comparing IS methodologies proposed by Avison and Fitzgerald (2006). Conversely, the original constructor domain was discarded from the taxonomy structure since its definition could be limited to particular areas of concern, but alignment research commonly envisages the entire organisation rather than business units or departments. The practical substructure includes other six constructors (practice/audience, scope, output approach, data analysis technique, data collection technique, type of data source). These six elements were taken from the Avison and Fitzgerald (2006)’s framework and included into the practical group as result of the second source of construction. However, the names of three elements suggested in the Avison and Fitzgerald (2006) framework were changed for the practical structure in order to clarify their concepts. The original terms output, techniques and tools, product and target were replaced by output approach, data analysis technique, data collection technique and type of data source respectively. A detailed description of each theoretical and practical constructor is itemised in table 3 and table 4. Each suggested constructor will guide into the content of underlying constructors involved in alignment assessment. It is expected that constructors within a study will help the process of understanding a study as well as provide comparing mechanisms against others. The description of each constructor pretends to be a guideline for researchers and practitioners when they are planning a project of alignment assessment.
5 ANALYSIS OF RESULTS

Having defined the taxonomy structure, data from six representative alignment assessments was used to validate the taxonomical study (see table 5 and table 6). Theoretical and practical insights were analysed according twelve underlying constructors, six theoretical and six practical. The design of the taxonomy implies that studies can be examined by using either one of insights or both insights. In this research, these implications are explained through some examples. For instance, both insights were applied to Luftman’s (2003) approach. By using the taxonomy structure, Luftman (2003) is summarised according its theoretical and practical capabilities. In the following paragraph, each constructor has an italic font to help the reader to identify the taxonomy’s functionality.

[Luftman (2003) research’s objective aims recommendations for improving alignment based on maturity categories by means of a model originally adapted from the Capability Maturity Model]
This study not only considers six categories (communication, competency, governance, partnership, technology scope, and skill) to assess alignment maturity in any organisation, but also to achieve and maintain such maturity alignment. His roundtrip scope for assessing, achieving and maintaining alignment suggest a dynamic paradigm process to understand alignment. To use in practice his assessment, Luftman applies a questionnaire and interviews with IT and business executives. These executives are in charge of the final overall alignment score, which is agreed by using group-decision-analysis techniques, to carry out consensus. In fact, this technique considers executive’s perceptions by measuring a synergy between individual maturity criteria. Results are based on mutual understanding of such perceptions which relate to a strategy that exclusively assesses current organisational planning. His research product is a conceptual framework which can be applied via questionnaire.

The taxonomy also permits either practical or theoretical examinations. By using the theoretical substructure only theoretical characteristics of an assessment can be examined, thus the content of six constructors: objective, nature of strategy, dimension, type of measurement and background model will give the theoretical insights of the analysed study. For instance, Avison et al. (2004)’s research objective aims to determine alignment levels by means of the strategic alignment model (SAM). Their practical framework understands alignment in a dynamic environment by working on the process paradigm. They consider realised strategy since documentation of projects completed is used to perform the assessment. A classification which matches projects based on the strategic alignment model (SAM) perspectives represents their data analysis technique. Subsequently, a graphical representation is produced to evaluate the alignment level. Similarly, the practical insights of alignment assessments can also be analysed though the proposed taxonomy. In this case, the constructors: practice/audience, scope, type of data source, data collection technique, data analysis technique and output approach, can be outlined for those alignment assessments to be analysed. For instance, this functionality was applied to Hale and Cragg (2003). They put in practice an alternative to measure alignment for small and medium enterprises (SMEs) by assessing people perceptions. This scope embraces exclusively assessing alignment regardless achieving or maintaining alignment. They provide a research deliverable of an instrument based on a questionnaire and interviews applied to top management levels. They assess synergy of two scores to depict a moderation type of measurement approach. As a result of the proposed taxonomy, theoretical and practical capabilities of alignment assessments can be outlined. For this research, six representative studies were benchmarked by means of the theoretical and practical substructures of the taxonomy. Even though the process to fill out the data from such studies is complex, the taxonomy guide into the underlying constructors comprised by typical alignment assessment. It is expected that taxonomy’s users be familiar with the study be applied into the taxonomy. To test the taxonomy, the six studies were filled into it. Data content from Luftman (2003), Chan et al. (1998), Reich and Benbasat (1998) and Papp (2006), Avison et al. (2004), Hale and Cragg (2002) were added. Their theoretical and practical capabilities can also be visualised in table 5 and table 6.
<table>
<thead>
<tr>
<th>Study</th>
<th>Aim objective</th>
<th>Nature of strategy</th>
<th>Paradigm</th>
<th>Dimension</th>
<th>Type of measurement approach</th>
<th>Background Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan et al. (1998)</td>
<td>Measure existing use of IT in organisations</td>
<td>Realised</td>
<td>State</td>
<td>Social</td>
<td>Moderation</td>
<td>SAM related</td>
</tr>
<tr>
<td>Hale & Cragg (1996)</td>
<td>Measure alignment for small firms & investigate factors that influence alignment</td>
<td>Realised</td>
<td>State</td>
<td>Social</td>
<td>Moderation</td>
<td>SAM related</td>
</tr>
<tr>
<td>Luftman (2003)</td>
<td>Identify recommendations for improving alignment based on the organisation’s maturity</td>
<td>Realised</td>
<td>Process</td>
<td>Social</td>
<td>Moderation</td>
<td>Non-SAM related</td>
</tr>
<tr>
<td>Reich & Benbasat (1998)</td>
<td>Measure the social dimension of alignment</td>
<td>Intended</td>
<td>State</td>
<td>Social</td>
<td>Matching</td>
<td>Non-SAM related</td>
</tr>
</tbody>
</table>

Table 5: Theoretical constructors of the taxonomy applied to six alignment assessments

<table>
<thead>
<tr>
<th>Study</th>
<th>Practice/Audience</th>
<th>Scope Type of firm</th>
<th>User</th>
<th>Ac</th>
<th>As</th>
<th>M</th>
<th>Type of data source</th>
<th>Data collection technique</th>
<th>Data analysis technique</th>
<th>Output approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avison et al. (2004)</td>
<td>Any</td>
<td>(Top) Mgmt</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>Based on documentation</td>
<td>Self-developed technique (Graphical representation)</td>
<td>Classification of projects</td>
<td>Practical framework</td>
</tr>
<tr>
<td>Chan et al. (1998)</td>
<td>Any</td>
<td>(Top) Mgmt</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Based on perceptions</td>
<td>Available technique (Questionnaire)</td>
<td>Typology and comparative measurement</td>
<td>Instrument</td>
</tr>
<tr>
<td>Hale & Cragg (1996)</td>
<td>Small</td>
<td>(Top) Mgmt</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>Based on perceptions</td>
<td>Available technique (Questionnaire & interviews)</td>
<td>Scoring two different items</td>
<td>Instrument</td>
</tr>
<tr>
<td>Luftman (2003)</td>
<td>Any</td>
<td>(Top) Mgmt</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>Based on perceptions</td>
<td>Available technique (Questionnaire)</td>
<td>Group decision analysis</td>
<td>Conceptual framework</td>
</tr>
<tr>
<td>Papp (2006)</td>
<td>Any</td>
<td>(Top) Mgmt</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>Based on perceptions</td>
<td>Available technique (Questionnaire)</td>
<td>Positioning of SAM perspectives</td>
<td>Model</td>
</tr>
<tr>
<td>Reich & Benbasat (1998)</td>
<td>Any</td>
<td>(Top) Mgmt</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Based on documentation</td>
<td>Available technique (Questionnaire & interviews)</td>
<td>Cross-reference analysis</td>
<td>Interpretative analysis</td>
</tr>
</tbody>
</table>

Ac= Achieving alignment
As= Assessment alignment
M= Maintaining alignment

Table 6: Practical constructors of the taxonomy applied to six alignment assessments

6 DISCUSSION

Two objectives have been addressed in this research: propose a taxonomy that organises and compares studies of alignment assessment in terms of their theoretical constructors and their practical use, and indicate the functionality of the taxonomy carrying out a comparative analysis of six representative alignment assessments. Thus, both objectives concern the discussion of this research. Firstly, the functionality of the taxonomy was applied by means of organising theoretical and practical capabilities of alignment assessments, then testing these capabilities into six representative studies. Twelve constructors were defined to characterise them, six practical (practice/audience, scope, output approach, data analysis technique, data collection technique and type of data source) and six theoretical (aim objective, nature of strategy, paradigm, dimension, type of measurement approach & background model) constructors. Even though filling out data from the six studies into the taxonomy
structure is not a simple process, the taxonomy guides into the content of those underlying constructors attained to alignment assessments and provides comparing mechanisms. After testing the taxonomy functionality, the comparative analysis of the six selected assessments reveals that most of them tend to measure senior management perceptions instead of tactical or operational mechanisms within organisations. However, these mechanisms might limit the process of assessing alignment consistently since alignment measurements should consider a variety of indicators at all organisational levels (Zee, 2001). This gap research has been raised in Gutierrez et al. (2006) which suggests an instrument that comprises strategic, tactical and operational levels to assess alignment within SMEs. From the comparative analysis it becomes apparent that a process paradigm has been more embraced by recent research. This coincides with Avison et al. (2004) arguments in the sense that earlier research on alignment has been focused predominantly on “state” perspectives rather than processed-dynamic approaches. In addition, by considering the six selected studies, the social dimension of alignment leads over the intellectual dimension when approaching alignment. Most of these studies have opted to consider a social dimension and assuming that alignment tends for mutual understanding of business and IT mission, objectives and plans. This has a wide consideration about people behaviour within the whole extent process of alignment since it is required people’s mutual understanding of alignment to increase the level of success in an alignment implementation. Hence, the taxonomy’s results not only confirm a variety of approaches to assess alignment but also, by taking in account the comparative analysis, it might suggest a possible trend in the way IT-business alignment could be researched. This alignment’s trend based on social perspectives and a dynamic process approach paradigm shapes an alignment research approach more dynamic and related to process-oriented issues which also has been included as a significant interest to IT governance literature and cross-related activities of organisational business processes (Thorogood et al., 2004).

7 CONCLUSIONS AND FURTHER RESEARCH

This paper forms part of an ongoing research on alignment assessment. This research contributes to the IT and IT-business planning process by providing a taxonomy that includes six theoretical (aim objective, nature of strategy, paradigm, dimension, type of measurement approach and background model) and six practical (practice/audience, scope, type of data source, data collection, technique data analysis technique, and output approach) constructors which allows comparing insights into current alignment assessments. In this research six representative studies of alignment assessment were applied into the taxonomy to verify its functionality. Results clarify a trend in alignment assessments towards a social paradigm. Most of the evaluated studies aim to adopt mutual social understanding between factors that inhibit or enable the process of achieving alignment. This implies a wide consideration on people behaviour and subjective factors throughout the alignment process. It becomes apparent an alignment research more dynamic and related to process-oriented measures based on complex organisational criteria. Despite the increasing relevance of alignment in the industry, few studies look for practical capabilities and most studies remain theoretical. Research into alignment remains still complex for practical proposes which limits organisations in the planning to be aligned. The proposed taxonomy helps in this IT-business planning process when insights into various alignment assessments need to be exhibited but further research in the area is required. Although ten out of the twelve constructors have been categorised with no more than 2 categories, constructors such as output approach and data analysis techniques require fewer categories of classification in order to improve the comparative insights of the taxonomy. Thus, further research will be focused on integrating few categories for such constructors and researching on additional constructors. In addition, the taxonomy was designed by means of limited sources of development which are the result of only a sample of representative studies. Therefore, an extension of this research is a contribution with additional and refined constructors as well as guidance to identify them. An extensive review of relevant articles and examination of techniques of comparison might contribute to the functionality of the taxonomy.
References

Smaczny, T. (2001), Is an alignment between business and information technology the appropriate paradigm to manage IT in today’s organisations?, Management Decision, 39(10), pp. 797.

