DFDs: Evolutionary Status and A Cognitive Based Empirical Investigation of Level 0 DFD Clarity

Karl Brett Lloyd
University of Pittsburgh, LLOYD@VMS.CIS.PITT.EDU

Follow this and additional works at: http://aisel.aisnet.org/amcis1995

Recommended Citation
http://aisel.aisnet.org/amcis1995/69

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in AMCIS 1995 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
DFDs:
Evolutionary Status and
A Cognitive Based Empirical Investigation of Level 0
DFD Clarity...

Implications for Level 0 DFDs
and Diagramming in General

Karl Brett Lloyd
Katz Graduate School of Business
University of Pittsburgh
329 Mervis Hall
Pittsburgh, PA 15260
LLOYD@VMS.CIS.PITT.EDU
http://info.pitt.edu/~Lloyd/

ABSTRACT/SUMMARY

The data flow diagram (DFD) has been a development, communication, and
documentation technique in the systems analyst toolbox for almost two decades. Both
surveys and expert opinion confirm that the data flow diagram is a popular and most
preferred tool of its class structured analysis and design tools (Whitten, Bentley, & Ho,
1986, p.221). Recent surveys indicate as much as an 80% usage of DFDs (Jain & Purao,
1991; Martin, M., 1991, p.98). These surveys also indicate that of all the "structured
tools", the DFD is consistently used more than the others. Numerous authors attest to the
DFD's popularity (Vessey & Conger, 1994; Vessey, Jarvenpaa, & Tractinsky, 1992;
Protsko, Sorenson, Tremblay, & Schaefer, 1991; Capron, 1986; Gore & Stubbe, 1988;
Kendall & Kendall, 1988; Martin & McClure, 1985; Martin, M., 1991; Powers, Cheney,
& Crow, 1990; Wetherbe, 1988; Whitten, Bentley, & Ho, 1986; Yourdon, 1989, etc).

The DFD continues to evolve and to be found useful as an adjunct to new developments
in systems analysis and design techniques. Some researchers have concentrated on
improvements designed to overcome the congenital DFD weakness in depicting timing
and control (Richeter & Maffe, 1993; Liu, 1993; canfora, Cimitile, & De Carlini, 1990;
Robson & Henderson, 1993; France, 1992). These and other improvements have been
implemented in CASE tools (Chen & Chung, 1992; Tao & Kung, 1991; Protsko,
Sorenson, Tremblay, & Schafer, 1991; Warren, Stott, & Norcio, 1992). The DFD is also
being integrated with techniques and methodologies that are often considered mutually
exclusive. For example, Kuo (1994) presents an object-oriented methodology for deriving
entity-relationship diagrams from DFDs.

Accordingly, the DFD is one of few tools consistently included in texts covering
computer systems development. Other tools such as: action diagrams, Nassi-Shneiderman
charts, Warnier-Orr diagrams, state transition diagrams, etc. are not always covered. Instead they are either omitted or another similar function tool is presented. For example, pseudocode and/or structured english are often presented as tools to be used to complete process definitions instead of action diagrams.

Paradoxically, authors such as Martin and McClure (1985,p.162) emphatically note that although DFD use is widespread, the literature concerning DFD construction and use remain problematic that DFD clarity, especially in texts, is decidedly inadequate. Here, the level 0 DFD is examined to determine the sources and causes of its clarity difficulties. A Cognitive Information Processing-- Information Theory based perspective (CIPIT) is developed to (1) explicate precisely what the clarity problems are and (2) to provide an empirical, practical, scientific basis from which to form a minimum set of rules for highclarity level 0 DFD construction.

The CIPIT based rules extracted/developed here are applied specifically to the level 0 DFD but are largely applicable to diagramming in general because they address fundamental human information processing realities. The CIPIT rules guide the construction of a level 0 DFD that conforms well to the automated "over learned" human abilities to process information (Shiffrin & Schneider, 1977). The CIPIT rules are based on highly scrutinized and replicated seminal research that strongly supports certain pervasive elemental characteristics germane to displaying information in a manner that is most easily perceived and understood (high clarity). Howard (1983); Lachman, Lachman, & Butterfield (1979); and Oborne (1985) detail and summarize many key works related to the CIPIT rules. Their work provided a genesis point that structured this investigation of CIPIT related research and culminated in the detailed CIPIT-based diagramming rules presented in appendix A (level 0 DFD oriented rules that are broadly applicable). The CIPIT related works pertain to: 1. reducing perceived uncertainty (increase clarity) by decreasing the amount of information and/or alternatives Shannon, Hick, Hyman, Miller (late 40's - mid 50's); 2. enhancing understanding (increase clarity) by catering to automated human processing abilities--for example, gridlike structures are well-suited to automated human abilities--Mowbray & Rhoades, Fitts & Switzer, Neisser, Sternberg, Egeth, Shiffrin & Schneider, Chase & Simon, Wiedenbeck (early 50's - late 80's); 3. denoting relatedness by grouping together 'like' symbols (increase clarity) as indicated by the long-standing Gestalt proximity and similarity principles (early 20's - present); 4. increasing the speed and quality of text/label comprehension (increase clarity) by left justifying text and by using appropriate punctuation (punctuation that aids in creating text that conforms to our syntactic and semantic constituent sentential expectations) Fodor, Bever, & Garrett, Graf & Torrey, Anderson, and Trollip (mid 60's - present).

An experiment is carried out to compare the clarity of a DFD constructed using the CIPIT based rules (a high-clarity DFD) to an identical system modeled by a typical (low-clarity) DFD selected from a widely used text. The two main criteria used for the selection of the typical DFD were 1. it had to have high clarity relative to other typical DFDS (comparatively high clarity based on CIPIT rules) and 2. it had to model a well-known system so that subjects would share equal familiarity with the system depicted. Prior to the final test, extensive test development was carried out via 4 pilot tests, detailed subject
feedback, and consultation with other measurement and design experts. Clarity was measured quantitatively by comparing the two DFDs via a 19-item objective test administered to two groups. One group received the low-clarity typical DFD. The other group received the high-clarity CIPIT-based DFD. The test questions were identical for the two groups. Each test was scored by two different methods. Both methods yielded the same results—results supporting the main hypothesis that the CIPIT-based DFD should enable subjects to answer more questions correctly compared to the typical DFD.

Qualitative clarity information was gathered via 6 likert scale items. All results strongly support the utility of the CIPIT-based rules (refer to tables 1 and 2 below).

This study represents both an original synthesis and a first empirical investigation analyzing the clarity of level 0 DFDs. Given the broad empirical foundation supporting the DFD construction rules and the strong positive findings here; many diagramming techniques may benefit and expand upon this research.

Table 1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Scoring Grp1 Cipit-based Grp2 Typical</td>
<td>11 12</td>
<td>15.661 13.180</td>
<td>0.683 1.654</td>
<td>5.87</td>
<td>0.0045</td>
<td>4.62</td>
<td>21</td>
<td>4.77</td>
<td>14.90</td>
<td></td>
</tr>
<tr>
<td>Total Scoring Grp1 Cipit-based Grp2 Typical</td>
<td>11 12</td>
<td>13.545 10.500</td>
<td>0.934 1.784</td>
<td>3.65</td>
<td>0.0255</td>
<td>5.06</td>
<td>21</td>
<td>5.19</td>
<td>16.90</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>DFD Clarity Rating</th>
<th>Group 1</th>
<th>Cipit-Based</th>
<th>Group 2</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1-very poor/little to 5-very good/much</td>
<td>Mean</td>
<td>Stan. Dev.</td>
<td>Mean</td>
<td>Stan. Dev.</td>
</tr>
<tr>
<td>DFD Clarity Rating</td>
<td>3.727</td>
<td>0.786</td>
<td>3.500</td>
<td>0.674</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>DFD Ability to Descr. Sys.</td>
<td>4.182</td>
<td>0.751</td>
<td>3.750</td>
<td></td>
</tr>
<tr>
<td>DFD Exposure</td>
<td>2.182</td>
<td>1.079</td>
<td>2.167</td>
<td></td>
</tr>
<tr>
<td>Checking Exposure</td>
<td>1.909</td>
<td>1.221</td>
<td>2.000</td>
<td></td>
</tr>
<tr>
<td>DFD not Clear Response</td>
<td>0.545</td>
<td>0.820</td>
<td>1.833</td>
<td></td>
</tr>
<tr>
<td>Time - in minutes</td>
<td>26.545</td>
<td>5.973</td>
<td>27.083</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

NOTE: Fourteen references are not listed due to space limitations, but are available upon request.


