Evolving team dynamics in IS implementation

Michael T.K. Tan
University of Nevada, Reno, mtktan@unr.edu

Hung-Pheng Tan
National University of Singapore, tan.hung.pheng@gmail.com

Elizabeth Koh
National University of Singapore, kohruili@comp.nus.edu.sg

Ern-Shan King
NCS Private Limited, ernshan@ncs.com.sg

Follow this and additional works at: http://aisel.aisnet.org/ecis2006

Recommended Citation
http://aisel.aisnet.org/ecis2006/144
Evolving Team Dynamics in IS Implementation

Michael T. K. Tan, University of Nevada, Reno, U. S. A., mtktan@unr.edu
Hung-Pheng Tan, National University of Singapore, Singapore, tanhp@comp.nus.edu.sg
Elizabeth R. Koh, National University of Singapore, Singapore, kohruili@comp.nus.edu.sg
Ern-Shan Kong, NCS Private Limited, Singapore, ernshan@ncs.com.sg

Abstract

The tremendous technological changes today have increased the sophistication of Information Systems (IS) functionality and complexity in IS implementation team dynamics. Many projects now frequently involve not only in-house IT professionals and business users but also consultants and/or vendors as key members in the implementation team. Thus, the traditional IT-business relationship is increasingly being expanded to include key external stakeholders – all of whom must collectively fulfil their respective roles and responsibilities in a coordinated manner in order to ensure a successful implementation. These complex and multi-faceted relationships could affect the success of IS projects such as the Customer Relationship Management (CRM) systems which have seen particularly high failure rates.

This study aims to shed light on such evolving IS implementation team dynamics. We focus our study on the various roles in the team during the implementation of a CRM project in a major bank in Singapore. Interestingly, our findings reveal the dynamic and fluid nature of these roles among the multiple work groups during the development process. In particular, we witnessed fluid “leader-supporter-follower” dynamics instead of the expected traditional static “leader-follower” hierarchy commonly seen in many past IS projects. The case study suggests that the key to successful IS implementation lies in a keen understanding of how specific knowledge flows can precipitate such “leader-supporter-follower” dynamics.

Keywords: Customer Relationship Management Systems, Team Dynamics, Information System Implementations.
1 INTRODUCTION

The rapid progress of technological change has revolutionized the way organizations behave. Organizations no longer utilize standalone computer programs but integrated Information Systems (IS) solutions that enable business strategies. Legacy systems are being substituted or extended over the past decades as new technologies enter the market. Enterprise Resource Planning (ERP), Supply Chain Management (SCM) and Customer Relationship Management (CRM) systems are just some of the sophisticated IS that have taken over or extended the reach of the organization’s legacy systems. IS by itself is a complex technical and organizational innovation and implementing such labyrinthine systems are not without its risks (Scott and Vessey, 2002). Organizations may face “death by bees” in which a single bee sting will not kill, but thousands of bee stings will; organizations may be brought down by thousands of small system problems and inefficiencies (Glaser 2004).

To develop such comprehensive solutions and to overcome all these hurdles, the implementation team would not just require people from a certain division, but from a diverse range of departments, functions and technical expertise. The modern-day team usually requires the expertise of consultants and vendors, the business knowledge of users and the coordination and management of in-house IT professionals and developers. The sheer variety of team members transforms the traditional IT-Business relationship between users and IT professionals to a multi-faceted one with the addition of consultants and/or vendors. It is no wonder that the complexity of the implementation team dynamics is growing and it is becoming a managerial challenge rather than a technical challenge to ensure the success of the project (Pinto and Millet 1999).

1.1 Motivations of this Study

To reiterate, the complexity of IS and associated implementation team dynamics could affect the success of projects. Although success rates of implementations have been gradually improving over the years, overall failure rate still registered at 15% with another 51% considered “challenged”, that is they were over schedule, over budget and/or lacking critical features and requirements (CHAOS 2003). In particular, more than 50% failures have been reported for CRM implementations (Songini 2003) and as high as 85% implementations were reported as not being fully successful (IBM 2004). It is therefore important to study the relationship between the multiple groups in the modern-day implementation team and determine its impact on the successful implementation of such projects.

1.2 Focus and Roadmap of the Paper

This study focuses on the interrelations among the multiple groups such as the IT professionals, users and consultants during the development process - it aims to shed light on how the implementation team dynamics affect the success of IS projects. We begin with a review of past literature on the increasing sophistication of IS and the rapidly changing dynamics in the implementation team. We then present our findings in the context of a CRM project in a leading major bank in Singapore. Based on these findings, we propose a new perspective for understanding the intergroup relationships. We conclude with implications for research and practice.

2 LITERATURE REVIEW

2.1 Increasing Sophistication of IS Functionality

Information systems were created when organizations started automating their mainly repetitive processes in order to make large efficiency gains. These early systems, characterized by their mission-critical business function, their length of time in service and high maintenance costs (Warren 1999),
were generally termed as legacy systems. In the 1970s, the manufacturing environment introduced Material Requirements Planning (MRP) systems to plan and control production (Hossain, Patrick and Rashid 2002). It soon evolved into MRP II to include more business functions (Wight 1984) and later further expanded its scope into ERP systems to present a cross-functional view of the organization, followed by ERP II, SCM and CRM (Antonucci, Corbitt, Stewart and Harris 2004). The concept of CRM, first appeared in the early 1990s, is to enable an organization to sustain a long-term relationship with their most profitable customers and at the same time reduce costs; increase the interaction between customers and consequently maximize profits (Light 2003; Xu, Yen, Lin and Chou 2002). These packaged solutions allow firms to automate and standardize processes relating to acquiring, servicing and retaining customers. In general, CRM is an all-embracing approach that seamlessly integrates the sales, marketing, field support and other functions that touch customer service.

In general, enterprise systems are typically configured or customized to the needs of the business. Furthermore, many organizations retain their legacy systems as part of their enterprise systems (Huang, Yen, Chou and Xu 2003). Organizations usually have to integrate their old legacy systems together with the newer corporate applications. This adds to the complexity of the functionalities of their information systems and undoubtedly it becomes a challenge for organizations to develop and maintain them.

2.2 Growing Complexity in IS Implementation Team Dynamics

Alongside the development of labyrinthine information systems, the dynamics in system development teams are also rapidly changing. Traditional IS implementation teams consisted of in-house developers and had little or no user participants. As the scope of IS expanded, implementation teams tended to involve a small number of users in addition to in-house developers. When many large organizations started implementing enterprise systems such as ERP, SCM and CRM in the late 1990s, the team requirement expanded to include people with both domain knowledge and technical dexterity. For instance, a CRM solution contains many components that enable management to have a bird’s eye view of the front and back offices. In the banking environment, these components include multimedia access channels such as Auto Cash Machines, Phone Banking, Internet Banking and Call Centers which must fall under one integrated CRM package (Xu et al. 2002). Thus, a specialized skill set is required and a fair number of firms outsourced their development to consultants or vendors who had more system expertise. The implementation team now typically consists of external consultants in addition to user representatives and in-house IT professionals.

Unfortunately, many of the systems have failed. For instance, Gartner research revealed that 50% of companies regard their CRM implementation as a failure (Songini 2003). An AMR research study found that only 16% of CRM implementations have returned value (Ware 2003). One of the main problems for the failure of these large projects is that there is no proper integration between the different levels, functions and processes. There is also insufficient planning especially planning for change which is evident from user resistance and dissatisfaction of the system in many past projects (Taylor 1998; Huang et al. 2003). These large monolithic systems can affect thousands of employees but only a small percentage of users in comparison are involved in the implementation team (Markus and Mao 2004). The minimal involvement of users in the implementation team also contributes to failure. As the engagement of consulting services becomes more prevalent, the complexity of involving more parties in the implementation team and the risks of failure increases. In short, implementation team dynamics have become more complex due to the diverse groups of people, their roles and the stronger inter-group relationships.

3 RESEARCH STUDY

With the increasing sophistication of IS and the complexity in IS implementation teams, it is essential to consider the interrelations between members of the development team. There are three main ways
which team members can positively impact the project – the creation of psychological buy-in, the improvement of system quality and the emergent interactions between developers and users (Markus and Mao 2004). Chiefly, the emergent interactions explanation which illustrates system success through the ongoing relationships between IT professionals, consultants and user representatives, is of particular interest to our study.

The emergent interaction explanation is that user participation activities could lead to good or bad relationships between developers and users. A myriad of factors account for the inconsistent end results of systems development such as the contradiction in the roles of users and developers (Beath and Orlikowski 1994). Nonetheless, there are two standing issues within the emergence explanation that needs further exploration. The first gap is the relationship between the users and developers. Today’s IS projects do not only involve the traditional user representatives and IT professionals but also comprises the IT consultants and technology vendors. How does the complicated mass of relationships affect the implementation team? The second issue is the gap between user participation’s functional and its relational outcomes (Markus and Mao 2004). It cannot be assumed that a good relationship between users and developers will lead to system success. For instance, the culture of the organization may be such that the system is well-received by the users but the system does not fulfil the functional goals of the organization.

3.1 Research Questions

Based on the foregoing discussion, this study seeks to answer the following questions:

1. What is the current state of team dynamics among the groups of IT professionals, users and consultants in the implementation team?
2. How do the dynamics of the implementation team affect the outcome of system development?

3.2 Research Site

This study takes place in a leading major local bank in Singapore where the government strive to become an attractive regional hub for financial activities. Financial services accounted for 12% of Singapore’s GDP in 2004. Back in late 2002, the bank embarked on a massive two-year plan to launch the CRM project for all its customers in five phased releases starting from its consumer customers and to end at its corporate customers, with each release build on capabilities gained from the previous releases. The CRM vision was to increase the cross-sell ratio, improve customer satisfaction and improve efficiency and effectiveness of sales and servicing. As the bank did not have enough in-house expertise, they decided to outsource the project to a consulting company which they had worked with before. The consultants were from a reputable agency and had the experience of implementing CRM in other banks. Top management and the consultants then carefully decided on a software package that suited the bank’s needs. As the bank had very specific needs and there was a limitation to the software package chosen as with most CRM packages, the software had to be customized. The first two of the five releases, namely Alpha release and Beta release, were focused on building the Contact Management System across all touch points. The subsequent Gamma release was to integrate the existing Wealth Management System to the CRM system while Delta release catered mainly to call centre and the card centre systems. All these first four releases provided for the individual consumer market. The last release, which is the Epsilon release and the context of this study, is the introduction of CRM for the corporate and commercial consumers.

3.3 Research Methodology

This research was conducted from May, 2004 to March, 2005 with a two-month immersion in the bank at the start of the study. The research methods used were qualitative in nature to allow us to gather a large amount of experiential data and perceptions through interviews, observations,
participations and informal chats. Our primary sources of data were face-to-face in-depth interviews and participant-observation of work procedures. Secondary data collection was through examination of internal documents and access to the Intranet of the bank. A total of 19 key informants, consisting of 10 IT professionals, 7 business users and 2 external consultants were formally interviewed. After the immersion, ongoing ad-hoc contacts and updates from the bank continued until March, 2005. Interviewing people only forms part of our data gathering. Interaction with the bank staff and the external parties also allowed us to have a better understanding of the situation. We were also able to understand how existing systems and the subject CRM package are integrated and the day-to-day routines of various staff in the usage of the systems. In this regard, a typology of observation processes was used to progressively guide us in focusing the observations in the field (Werner and Schoepfle 1987). A preliminary interview questionnaire was developed at the start of the study and it was gradually refined over time. Interviews were first transcribed on paper, and then compared alongside one another for emerging themes. Certain keywords frequently repeated in the interviews and our investigator notes were coded to generate and construct the main themes, which in turn provided the premise for our eventual findings.

4 RESEARCH FINDINGS

4.1 The CRM Project

The Epsilon release of the two-year CRM project followed a sequence of key stages of implementation cycle similar to other releases, namely, Functional Design, Build, Systems Integration Testing (SIT) and User Acceptance Testing (UAT). The build stage where the system components were built took place in a neighbouring country where labour costs were lower. The rest of the stages were located in the bank’s premises within Singapore. The implementation team for this release comprises several groups from the IT department, various user departments and external agencies such as the consultant and vendor. The IT group consists of 20 staff of which 5 are core members. There was a project manager overall in charge assisted by team leads. All these IT professionals are collectively called the IT Group in this study. Business users were seconded from different departments in the Commercial Credit sector of the bank. They include account relationship managers, branch tellers and call centre executives. The size varies and reached its peak during the UAT stage to help in the testing. They include business user team lead, the functional leads who were in charge of various user divisions and core users who specialized in different modules. All these business users will be termed simply as the Users henceforth. The consultants were divided into two wings – the functional wing and the technical wing. The functional wing of the consultants were in charge of the functional design stage while the technical wing representatives sat in during workshops and were to build the system later. Several consultants were based at the bank. They coordinated the fixes and integration of the package. These two wings shall be jointly called the Consultants.

4.2 Functional Design Stage

In this stage, the IT Group, the Users and the Consultants met each other to produce the functional specifications - an essential document in which the CRM system will be built upon. Being the expertise of CRM best practices, the Consultants immediately took charge. They demonstrated the role of leaders. They “drove” the project and proactively organized and conducted a series of workshops and walkthrough sessions to gather the requirements of the system from the users. The IT Group and Users recognized the expert leadership of the Consultants and gladly welcomed them. In embracing the Consultant’s lead and learning best practices from them, the IT Group and Users reinforce the perception of the Consultants being their leaders. A deep sense of trust Users had of the Consultants, a key factor in the successful accomplishment of this stage, was evident from Users’ words like “painted a nice picture [of CRM] at the start” and “we took the consultants’ word”.

5
In contrast, the Users were more ambivalent. Unlike the Consultants and IT Group, they were totally new to the CRM system. The Users admitted that they were “greenhorns” and were apprehensive of using such complex software. One core user voiced her bafflement at being chosen for this assignment:

“No! I was thrown into the project. I entered [the project] while they were doing brainstorming sessions for the functional requirements. In fact, I went back to my boss to ask him whether he is sure that I am suitable [for this job]. I felt it [this project] is not for me, that this was one tough job”

Even the IT Group sensed the users’ uncertainty. One IT professional mentioned that the Users were “soft” and did not know what they wanted from the Consultants. In order to meet the deadline, the functional specifications were to a large extent derived from the old system as much of the business rules and the bank’s security mechanisms were already embedded in the legacy system. Thus, even though the users provided the business rules and supported the project, they seemed doubtful of their abilities and thereby played the role of followers rather than supporters.

The IT Group ensured that the Consultants did not exceed the budget and that the proposed system was technically feasible bearing in mind the bank’s hardware infrastructure and IT architecture. Actively supporting the lines of communication between Users and Consultants such as the transfer of user requirements to Consultants, an IT professional explained their function:

“We are more like a middle party where we translate user requirements to the consultants. ... We play a policeman role and a reviewer too.”

Users likewise felt that the IT party were the “middleman” and “watchdog”. The common view among the Users was:

“The IT function is like the watchdog. They watch the budget, make sure that the system is workable, make sure that users know what the system is about, and make sure that the project is going to work.”

Being a group who understood the work required of them and by coordinating tasks well with the Consultants, the leader, the IT Group portrayed a clear role of supporters at this stage.

Interestingly, the investigation has revealed the prominence of knowledge flows between the groups. Specialized skills needed in this phase seem to permit groups to take on leader roles and generate a flow of expert knowledge to others. This knowledge exchange also had a return flow from other groups such as feedback and business knowledge.

4.3 Build Stage

In this stage, the system was coded from the technical specifications which were derived from the functional specifications developed earlier. The Consultants were responsible for the actual programming of software code modules. The IT Group was in charge of building gateways between the host interfaces and the CRM system among other technical roles. From the tasks required, these two groups played interdependent and parallel roles. Both groups saw themselves as “partners” with each performing complementary roles and taking the lead in the two different areas. On closer examination, we found that the Consultants had actually divided themselves into smaller specialized groups, each responsible for specific tasks. They were well trained in writing codes to customize the package for the bank hence rigorously led the development process. They were perceived as leaders again. On the other hand, being the technical experts of the bank’s own systems with the Consultants reporting to them, the IT Group were in firm control of all the existing systems. They prepared the technical environment for the Epsilon release of the CRM system and coordinated the required changes with the Consultants through the transfer of internal systems’ knowledge. In addition, they closely monitored and gave feedback on the progress of the Consultants. There was an average of
three meetings with the Consultants a week. In reality, they are the **de facto leaders**. An IT team lead echoed this leader role:

> “We are in-charge of system migration. All systems have to migrate [due to the new CRM system]. Licensing and Upgrades are involved, which limit the lifespan of every application.”

This changing role of the IT Group from supporter in the earlier stage to the group in charge at this build stage is due to its domain knowledge of the systems precipitated by a flow of technical CRM knowledge from the Consultants.

During this stage, the presence of the users was largely absent. They were tasked to construct test scripts to prepare for quality testing under the guide of the IT Group. As mentioned previously, being doubtful of their abilities, they blindly followed their instructions and only met up occasionally to update the other groups on their progress. They clearly took on the role of passive **followers**.

4.4 Systems Integration Testing Stage

The purpose of this stage was to ensure that the customized software package was technically compatible with the bank’s host environment and that data was able to flow smoothly between other systems and the CRM. Without doubt, the IT Group being the most knowledgeable of the bank’s systems took sole control of the whole project and performed the role of **leaders**. An IT team member prided himself: “The IT function is the leader in the SIT”. They compiled a list of system issues, delegated work to users and monitored the system fixes of the Consultants. They carried out their tasks heartily despite being constrained in resources and determined to finish them by working long hours. The rise of the IT Group to be the sole leader coincided with the Consultants relinquishing control of the project. The shift of responsibility as to who coordinated the system fixes from the Consultants to the IT Group was significant in giving them a sense of master ship and control over the project. As recognized by a consultant:

> “For SIT phase, we do the bug fixes. Our role in every project is different. For this release, we are fixing the bugs whereas in other projects we are the one coordinating the bugs too.”

Despite their reduction of responsibility in this stage, the Consultants facilitated the progress of the project, coordinated well with the IT Group leader and gave advice to them when the need arose. The Consultants were only a mere telephone call or in some cases a literal call away as some of them was co-located with the IT Group on the same floor. An IT lead was confident of the support from the Consultants:

> “The consultants support the SIT environment in that they follow up with the issues raised. They’ll assign it to their build people to fix.”

In this manner, the Consultants’ role transitioned from leaders to **supporters**. Meanwhile, the Users started to emerged from working behind the scene. As the time drew nearer for the UAT, the users were relocated to the same building as the IT Group and the Consultants. More users were added to the group to help prepared the testing. The co-location created a sense of urgency among the users to participate more actively in the project. As a core user benefited from the co-location put it:

> “[The advantage of the co-location is] that we are more focused. Also, we can resolve problems face to face rather than over email which makes turnaround time faster.”

Users redoubled their efforts in the project as can be seen from the increasing technical queries they asked the other groups. Their roles had clearly transitioned from that of followers to **supporters**.
4.5 User Acceptance Testing Stage

UAT was executed by the Users to ensure that all the systems worked together as stated in the functional requirements to enable all business processes to work from the front end systems to the back end systems. There were clearly more intense interaction observed between groups through emails, phone calls, informal and formal meetings and briefings during this stage. Contrary to the usual assumption that the users are in charge of this stage, our findings reveal that due to their inexperience and uncertainty, they were hesitant leaders at best. Initially, users frequently felt inadequate and trapped. They were helped greatly by the IT Group and the Consultants. The UAT coordinator from the IT Group described how she personally guided the Users:

“[I gave] hands-on demonstration for them [the users] to visualize. When we give them presentations, sometimes users will not pay attention and only when given tasks, the users will start to ask questions as they have to do something. Users may not dare to anyhow click on the system and I have to teach them step by step how to use it.”

Subsequently, as the Users had more hands-on practice, they grew familiar with the system and managed to solve teething problems. This boosted their confidence and they soon came to accept that they were the eventual owners and the onus was on them to take charge of the system. Many also realised the practical benefits of CRM. One user reflected how it will boost customer relationship:

“It’ll also save Account Relationship Managers some time as we don’t have to log into different systems since they have the single sign-on architecture [in the CRM system]. In the past, not every manager will have access to all the different systems and they will be able to service the customer better”.

The User’s domain knowledge of the business rules was vital for the quality testing of the system. They were able to lead the testing during this stage and transferred system issues that they encountered to the IT Group and were soon perceived to become the leader. On the other hand, the IT Group remained very much in control of the project. There was a clear separation of duties between Users and the IT Group. An IT professional clarified:

“It is clear-cut between users and our role. What users want to see is the screen while IT division is more [concerned about] the technical area”

While Users led in the testing, IT Group coordinated the system fixes with the Consultants and provided Users “a lot of handholding”. Being in charge of the systems and providing technical guides to the Users, the IT Group was perceived as the de facto leader as noted by a project lead:

“Users actually own the project. Although it seems like the IT department is running the show [de facto leader], it is the users who own the project. The requirements and budget for CRM comes from them. [Users will] sign-off after UAT testing.”

The Consultant was actively fixing bugs as per the previous stage. Their actions supported both the IT Group and Users. Though the Users did not come into much direct contact with the Consultants, they credited the Consultants for providing the system and fixing the bugs. The Consultants themselves acknowledged their effective support of the project as they “liaise” with their client and help troubleshoot system queries. They were active supporters.

4.6 Team Dynamics and the Knowledge Flows

Based on our findings, we identify the dynamic roles of the various groups in the implementation team and the resulting knowledge flows during the various stages as summarized in Table 1 below.
Technical help! Supporter Business rules, system issues! Leader
Hands-on demonstration of CRM system, bug fixes a superior and is of higher status in the hierarchy while the follower is the subordinate and sits below the leader. The

<table>
<thead>
<tr>
<th>Roles</th>
<th>IT Group</th>
<th>Users</th>
<th>Consultants</th>
<th>Type of Knowledge Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>Best practices, walkthroughs</td>
</tr>
<tr>
<td>Supporter</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>Translated business requirements and technical feedback</td>
</tr>
<tr>
<td>Follower</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>Business requirements and rules</td>
</tr>
<tr>
<td>Build Stage</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>Internal system knowledge, testing instructions, feedback</td>
</tr>
<tr>
<td>Leader (de facto)</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Follower</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>System Integration Testing Stage</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>Task delegation, technical issues</td>
</tr>
<tr>
<td>Leader</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Supporter</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>User Acceptance Testing Stage</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Leader</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Supporter</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
</tbody>
</table>

Table 1. Role Dynamics and Corresponding Knowledge Flows

5 DISCUSSION

5.1 Dynamics of Evolving Roles

From our findings, it is evident that the roles the different groups played during the implementation were truly dynamic. At the various stages, the roles of the IT Group, business Users and Consultants changed dramatically as they interacted with each other and as the needs of the environment changed. Indeed, within the team each work group assumed one of three distinct roles, namely, leaders, supporters or followers. Table 2 traces the fluid evolution of these roles.

<table>
<thead>
<tr>
<th>Roles/Stages</th>
<th>Functional Design</th>
<th>Build</th>
<th>SIT</th>
<th>UAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT Group</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Leader</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Supporter</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Follower</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Users</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Leader</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Supporter</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Follower</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Consultants</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Leader</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Supporter</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Follower</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
</tbody>
</table>

Table 2. Summary of Role Dynamics

Especially interesting is the dynamic roles played by the Users. From supporters in the functional design stage where they were instrumental in providing the business requirements, they dropped to passively following the instructions to prepare test scripts in the build stage. Then in SIT, they refocused and increased their efforts in creating business scenarios demonstrating their support. Gaining confidence and familiarity with the system, they were finally able to lead the project in testing the quality of the system. In this regard, we found that the dynamics of the implementation team appears to revolve around fluid leader, supporter and follower roles.

5.2 Traditional IS Implementations: A Static “Leader-Follower” Hierarchy

The traditional leader and follower relationship is hierarchically oriented. The leader is a superior and is of higher status in the hierarchy while the follower is the subordinate and sits below the leader. The
relationship does not change and is static. Leaders are put in the position of authority due to seniority, credentials, political power etc. Leaders “lead” followers who “follow” the leaders. Followers carry out tasks that their superiors give them despite having different objectives from the superior. Followers work individually, hardly collaborating with others for fear of competition and wanting to secure their nest egg. This framework is typical in all organizations and organizations utilize chains of command and structure its employees based on division of labour and specialization. In the traditional IS implementation team too, a division of labour takes place. Team members are clearly divided into their specialization and follow the instructions of the leader. Consisting of in-house IT professionals and user representatives, the traditional IS implementation team displays a strict dichotomy between the leaders and the followers. IT professionals are normally assumed to be leaders while users are the followers (Leonard 2002; Nandhakumar and Jones 1997). When involving consultants, the assumption is that they are the leaders and the in-house IT staff and users are the followers. This is reported in numerous case studies including Wang and Paper (2005) who studied a systems development in which the firm’s CEO hired two IT consultants to lead the implementation project.

5.3 Evolving IS Implementations: A Dynamic “Leader-Supporter-Follower” Reality

When we adopt a “leader-supporter-follower” perspective, it appears to offer us a new angle to look at evolving IS implementation team dynamics. Firstly, the addition of the supporter to the leader-follower relationship is to emphasize the different attitudes and behaviour of the supporter from the follower. Other authors have termed supporters as active followers or followership (Townsend 2002), courageous followers (Chaleff 1995) and exemplary followers (Banutu-Gomez 2004). In this paper, we draw an important distinction between supporters and followers. While followers are mainly passive doers, supporters are independent thinkers and are indispensable to leaders. Supporters are people who collectively act with courage, intelligence, responsibility and self-reliance to accomplish project goals. They complement the leaders and they are just one step away from being leaders. They can rise up as leaders once the situation calls for it. This happened frequently as observed in our case study. Secondly, our “leader-supporter-follower” perspective obliterates the hierarchy within the leader-follower relationship. Supporters and followers need not be the subordinates of the leaders. They are all of the same status (Dixon and Westbrook 2003). As demonstrated in our study, the IT Group, Users and Consultants do not fall into a hierarchy. Instead all three groups were on the same plane and worked side by side and mutually dependent on each other. Thirdly, this new perspective purports that groups work together for a common goal. The business user team lead emphasized this as he described his relationship with the other groups as “professional, a team approach with common goals”. The roles of leaders, supporters and followers are not limited to a particular group but dynamically changes throughout the lifecycle of the implementation.

5.4 Web of Knowledge Flows Precipitates Dynamic Nature of Roles

Most importantly, what precipitates the “leader-supporter-follower” dynamics is a web of knowledge flows. Based on our findings, knowledge and the transfer of knowledge among the groups precipitate the changing roles of the groups. Expert power (French and Raven 1959) that is based on special knowledge, skills, and expertise is the key to being a leader. The possession of knowledge required in a particular stage empowers the group to play the role of leader in that stage (Fisher 2001). The lack of superior skills for that stage results in groups taking the role of supporters (Townsend and Gebhardt 1997). The group becomes a follower when it has no or little specialized knowledge of what to do during that period. For example, during the SIT stage, the Consultants did not possess the specialized knowledge of the bank’s systems interfaces and it was out of scope for them to lead. Yet, the Consultants did not become followers as they still possessed technical expertise and passed their knowledge of handling the bug fixes to the IT Group, showing their active supporter role.

Knowledge flows occur when groups interact. It is a process that starts from identifying knowledge to the actual process of transferring it to the participants and finally to the receiving unit (Mahnke and
Typically there is an outflow of expertise knowledge from the lead group to the supporter group and/or follower group which is reinforced by the return flow of feedback and agreement from the supporters and/or followers to the lead group. For example, being the CRM experts, the Consultants were leaders in the functional design stage. Through training workshops, they essentially passed their knowledge to the Users and IT Group. The receiving units in turn, learnt best practices from the Consultants and reciprocated by giving feedback. Specifically the “leader-supporter-follower” perspective suggests that groups need not possess the skilled expertise right from the start. Instead, groups can learn and derive domain knowledge from the knowledge flows among all groups. This can be seen through the knowledge flow between the IT Group and Consultants where the former learnt CRM domain knowledge from the latter. The IT Group was able to understand the new system and coordinate with the consultants beyond their normal expertise of the internal systems which established them as leaders during the Build stage. Likewise, technical system knowledge was transferred to Users and this empowered them to become leaders of UAT.

6 IMPLICATIONS FOR RESEARCH AND PRACTICE

6.1 Implications for Research

To recap, we have described the new “leader-supporter-follower” dynamics and that such dynamics were precipitated by a web of knowledge flows. Our focus was on viewing the dynamics between individuals from multiple groups. Interested researchers may wish to extend this study by analyzing the intragroup interactions between members of the group and also the intrapersonal forces within an individual. Such expansions are in line with Alderfer (1987), who suggests that any exchange between people is subject to three classes of forces corresponding to intrapersonal, intragroup and intergroup dynamics. For instance, intra-group forces are important to examine because of internal politicking within the group. This makes group coordination difficult and could prevent the group from taking on the leader role. Intrapersonal forces are significant in that some team members may have low self-esteem which in turn leads them to follow instructions rather than take initiative and become active supporters. In this regard, an observer is able to understand the condition of the actor’s group, the relationship of actors to their group as well as the relationship between the groups. Since knowledge flows seem to be an important precipitating element in the “leader-supporter-follower” dynamics, researchers could examine in detail the various types of knowledge flows between the groups. This may reveal the exact triggering kind of knowledge that gives rise to the various roles.

6.2 Implications for Practice

In today’s complex world, managing change in organizations is crucial to the organization’s success. Extending these findings, an ideal inter-group relationship would be that of a dynamic and fluid “leader-supporter” environment. In fact, close examination of our findings (Table 2) reveals that the successful implementation is closely related to the diminishing profile of followers. Leaders and supporters actively and collectively work toward common goals and they play different but equal roles on the same level. They are never found to be passive in their relationship but essential to success regardless of the role they are in that particular stage. We depict our vision of the evolving leadership dynamics as in Figure 1 below.

Though the study of leadership in IS projects has received much attention in the literature (Gefen and Ridings 2002; Galbreath and Rogers 1999), it would be interesting for practitioners to understand how “good” leadership versus “poor” leadership in IS implementations impact the success of the projects. There could be some cases where “good” leadership did not ensure implementation success; or when
successful implementation occurred with “poor” leadership. Such anomalies may be due to the fact that the “poor” leaders had “good” supporters, while “good” leaders only had followers

7 CONCLUSION

Perennial developments in the IT industry have increased the sophistication of IS functionality. A parallel situation has also occurred within the IS implementation team. Due to the addition of consultants and vendors who have expertise of packaged software systems, the relationships within the implementation team have become more complicated, intense and complex. Based on our case study of a CRM implementation in a major bank, we found that the different groups play the dynamic roles of leader, supporter or follower during various stages in the implementation. The groups have a shared aim of reaching the project’s goals and coordinate with each other to play the leader, supporter or follower role in relation to the other groups. Additionally, a web of knowledge flows precipitates the dynamic cache of these roles among the groups. Knowledge is transferred between all the groups and it precipitates and reinforces the leader, supporter or follower roles. Effective “leader-supporter-follower” dynamics buttressed by a web of knowledge flows is key to a successful system implementation as demonstrated in our case study. Indeed, the Epsilon release, as the latest release of the entire two-year CRM project has met with considerable success since its smooth roll-out in September, 2004. A limitation of our study is that our focus is only on the latest Epsilon release of the CRM project. A longer longitudinal analysis from the beginning of the entire project (from Alpha release to Epsilon release) would have been ideal.

References

