LIQUIDITY IN TIMES OF COMPETITION – EVIDENCE FROM THE EUROPEAN STOCK MARKET

Marco Lutat
Goethe-University Frankfurt, lutat@wiwi.uni-frankfurt.de

Michael Chlistalla
Goethe-University Frankfurt, chlistalla@wiwi.uni-frankfurt.de

Follow this and additional works at: http://aisel.aisnet.org/pacis2009

Recommended Citation
http://aisel.aisnet.org/pacis2009/59

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in PACIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
LIQUIDITY IN TIMES OF COMPETITION – EVIDENCE FROM THE EUROPEAN STOCK MARKET

Michael Chlistalla
Research Assistant
E-Finance Lab, Goethe-University Frankfurt
Grüneburgplatz 1, D-60323 Frankfurt, Germany
michael.chlistalla@efinancelab.de

Marco Lutat
Research Assistant
Chair of e-Finance, Goethe-University Frankfurt
Grüneburgplatz 1, D-60323 Frankfurt, Germany
lutat@wiwi.uni-frankfurt.de

Abstract

With the Markets in Financial Instruments Directive in effect since November 2007, new trading venues have emerged in European equities trading, among them Chi-X. This paper analyzes the impact of this new market entrant on the home market as well as on consolidated liquidity of French blue chip equities, newly tradable on Chi-X. Our findings suggest that owing to this new competition the home market's liquidity has enhanced. This is apparently due to the battle for order flow which results in narrower spreads and increased market depth. Given these results, overall liquidity in a consolidated order book is in the French case higher than without the new competitor.

Keywords: Electronic Market, Trading, Liquidity, Fragmentation, Exchanges.
INTRODUCTION

Following intensive discussions and circumstantial preparations across the financial industry, a new era has begun for European equity trading in November 2007 when the Markets in Financial Instruments Directive (MiFID) became applicable across Europe. By establishing a single market and a homogenous regulatory regime for investment services across the European Economic Area, the new regulatory framework MiFID has been expected from its origins to trigger fundamental changes in the European equities trading landscape. Indeed, there is consensus among traders that by the time of its first anniversary, MiFID has been successful in its main objective: to lead to more competitive equity markets in Europe. Its consistent classification of execution venues (which implies the abolition of formerly existing concentration rules that obliged investment firms to route orders exclusively to stock exchanges) has led to the emergence of new multilateral trading facilities such as Chi-X, Turquoise and Nasdaq OMX Europe. From a technical perspective, the high degree of electronification as found in European equity markets and their trading participants favors competition. The creation and operation of new trading venues is facilitated once a trading system has been developed or acquired and the burdens of participating in these markets have been lifted, as nowadays traders’ physical presence at the trading venue is not required anymore.

In particular, new technologies like e.g. Smart Order Routing systems (SOR) enable investors to efficiently make use of liquidity available in more than one market. SOR access multiple liquidity pools, i.e. exchanges or alternative trading systems, to identify the best destination and apply proprietary algorithms to optimize order execution (Hallam and Idelson 2003). They continuously gather real-time data from the respective venues concerning their order book situations, i.e. current quoted volumes and prices. Based on this information the routing engine slices incoming orders and decides where to route individual suborders in respect of the best prices available in that logical second.

The new regulatory environment triggered by MiFID has also increased fragmentation among execution venues in Europe. So far, European equity trading mainly focused on a stock’s home market, while other trading venues had very little market share although blue-chip stocks have been cross-tradable in European exchanges (e.g. Xetra European stars, French and Dutch stocks from the EuroStoxx 50 index) for some ten years already.

UK-based Chi-X Europe is one of the new market entrants and has gained considerable market shares in European blue-chip stocks (5.8% in November 2008 of all European equities trades). Chi-X launched its fully electronic trading system on March 30, 2007 and currently serves 13 European markets. German and Dutch stocks from the DAX-30 and AEX-25 index respectively were the first to be made available for trading, with the other markets following successively and two future markets currently being under investigation. Business commenced rather sluggishly in the beginning as new members needed to be connected first in order to be able to trade.

While there is no doubt that competition for equity trading flow has increased in 2008, its impact on market liquidity remains unclear and needs to be investigated. Liquidity is known to be the most important determinant of market quality. It has an effect on the transaction costs for investors, and it is a decisive factor for order flow among execution venues. Against the background of MiFID’s best execution requirements, academics and practitioners are reasoning that the test for MiFID is whether competition will increase liquidity and efficiency or whether the benefits of competition for investors will be lost to the increase in fragmentation. This paper contributes to this discussion by an analysis of the impact of new execution venues on the liquidity of incumbent European equity markets. We analyze the cost of a round-trip trade of a certain size V (denominated in Euros) as indicator for overall liquidity for a set of French blue-chip stocks before and after the entry of a new competing execution venue, Chi-X, both for the home market and for a virtually consolidated market consisting of both order books. Against the background of initial sluggish trading contingent upon a too little number of connected members, we chose French stocks for our analysis. Chi-X had positioned itself a competitor of Euronext Paris for stocks in the French blue-chips index CAC-40 since September 28, 2007 – i.e. six months after going live with the first market.
The remainder of this paper is structured as follows: The next section surveys the relevant literature on market fragmentation and competition between markets. The market structures of both Euronext Paris and Chi-X are presented followed by a description of our dataset and methodology. The subsequent section reports on the findings of our analysis, while the last section provides conclusions.

RELATED LITERATURE

Our work as outlined in the introductory section addresses and contributes to two topics in academic literature: firstly in a general way the impact of market fragmentation and competition between markets on quoting behavior in dealer markets as well as on overall liquidity in order driven markets, and secondly in a more concrete way the topic of empirical market liquidity event analyses where market liquidity before and after the emergence of a new competitor is compared. This section will outline some of the studies relevant to our research purpose and their findings.

In one of the first papers on the effects of market fragmentation Hamilton (1979) analyses the off-board trading of NYSE-listed stocks on regional exchanges and in the third market, the over-the-counter (OTC) trading of listed securities among institutional investors and broker/dealers for their own accounts. When studying the NYSE specialist bid-ask spreads (the prices of marketability) and the daily returns variance, Hamilton finds the competitive effect of several markets to reduce both the NYSE specialist spreads and the daily stock variances by more than the fragmentation effect tends to increase them, although this net effect is not seen to be large.

Barclay, Hendershott and McCormick (2003) study the competition between Nasdaq market makers and electronic communication networks (ECNs) in US equities. Their results show that informed trades more likely occurred in an ECN and that the lower bound for permanent price effects was 50 percent higher for ECNs than for Nasdaq market makers. Their conclusions suggest the majority of aggregated price discovery to occur in ECNs.

The quotation behavior of dealers at the Nasdaq market is also focused by Bessembinder (2003). His hypothesis of competitive quotes helping increase a dealer’s market share on Nasdaq is analyzed after the introduction of new trading platforms such as SuperSOES and SuperMontage. As a result, SuperSOES is shown to increase the size elasticity, and SuperMontage to increase even both the size and price elasticity of dealer market share. A positive effect from the market participants’ perspective represents the fact that market centers tend to provide greater price improvements and faster executions when they post competitive quotes.

The competitive impact of ECNs on the Nasdaq is studied in Fink, Fink and Weston (2006) and found to have a positive effect on market liquidity as the development of these alternative trading platforms is associated with tighter quoted, effective, and relative bid-ask spreads, greater quotation depths and less concentrated markets. On the other hand the increase in ECN trading may have caused some traditional market makers (wholesalers and national retail dealers) to exit the market for market making as their profits tend to decrease with lowered bid-ask spreads.

Mayhew (2002) studies the effects of competition and market structure on the bid-ask spreads for stock options traded on the Chicago Board Options Exchange (CBOE) between 1986 and 1997. In this context options listed on multiple exchanges are found to have narrower spreads than those listed on a single exchange, but the difference is smaller for effective spreads than quoted spreads, and the effect diminishes as option volume increases. A competing exchange delisting a respective option leads to wider spreads in that option.

In their study, Boehmer and Boehmer (2002) examine the change in liquidity for 30 AMEX-listed exchange-traded funds (ETFs) upon being traded under unlisted trading privileges on the NYSE. The evidence presented indicates a substantial increase in liquidity following the NYSE entry.
The bid-ask spreads and volumes in options markets during the competition for listings in 1999 between the CBOE, the American Stock Exchange (AMEX) and the Pacific Exchange (PCX) are examined in DeFontnouvelle, Fishe and Harris (2003). Their findings indicate that effective and quoted bid-ask spreads decrease significantly after multiple listing, and that spreads generally maintain their initial lower levels one year later. Consequently, they reject that economies of scale in market making cause the decrease in spreads and support the view that inter-exchange competition reduces implicit transaction costs.

Foucault and Menkveld (2008) investigate the competition between Euronext and EuroSETS, which is operated by the London Stock Exchange (LSE), in the Dutch stock market. They compute the consolidated limit order book to be deeper and the Euronext depth to be larger after the entry of EuroSETS. They trace back the increased Euronext depth to the fact that Euronext responded to the EuroSETS entry with a fee reduction on limit order submission.

The case of the ECN Island reducing its market transparency in September 2002 is addressed in Hendershott and Jones (2005). Before this event, the trading of ETFs in the US was concentrated on Island. With a higher degree of market fragmentation after this event, Island’s effective and realized spreads increased, while effective and realized spreads fell in other markets. The net effect is determined a substantial increase in overall effective and realized spreads and therefore a worsening in overall ETF market quality.

As one can see from the outline above, the majority of studies support the hypothesis that the potential negative impact of market fragmentation on liquidity and overall market quality is overcompensated by the increase of liquidity resulting from a more competitive landscape. Embracing this hypothesis leads us to the following research question: Does the appearance of the new competitor Chi-X have a significant impact on the liquidity of the incumbent exchange Euronext Paris?

EMPIRICAL ANALYSIS

This section presents our research approach. The basic characteristics of the Euronext Paris and Chi-X market structures will be examined first followed by the description of our dataset and resulting limitations. Eventually, we will elaborate on our hypotheses and methodology.

3.1. Euronext Paris and Chi-X market structures

Euronext Paris (ENP) is a centralized hybrid market (i.e. quote- and order-driven) using an electronic trading system, the Nouveau Système de Cotation (NSC), where securities that are liquid enough or securities with a liquidity provider willing to accept certain obligations are traded continuously following price-member-time priority. The stocks we study are constituents of the blue-chip index CAC-40 and thus are traded continuously without a designated liquidity provider. All orders are anonymous on the order book. The pre-opening starts at 07:15 CET and orders are collected for the opening auction at 09:00 CET. After the opening auction, continuous trading immediately commences and lasts until 17:30 CET. Finally, a closing auction at 17:35 CET closes the trading day. The minimum tick size (price increment) is .01 Euros for all stocks. In order to avoid extreme price fluctuations, ENP has a built-in safety measure in continuous trading. If a price exceeds a specified limit, this mechanism automatically interrupts continuous trading and subsequently, an auction begins.

Chi-X is a trading platform operated by Instinet Chi-X Limited, an independent subsidiary of Instinet Europe Limited. It is authorized and regulated as an Alternative Trading System (ATS)/MTF by the FSA, the supervisory authority of the UK. This means, securities can be traded on Chi-X but cannot be listed. Trades on Chi-X are matched in price-time priority by a fully-electronic proprietary matching engine to which connectivity is set up via Internet Protocol (IP) connections without the need for specific hardware on the participants’ side. All Chi-X orders are anonymous on the order book. Chi-X’s trading day starts with a pre-market continuous trading period from 07:35 to 09:00 CET. During that time, orders are matched and unexecuted orders are automatically transferred to the subsequent continuous trading session which lasts from 09:00 to 17:30 CET. The opening auction
period lasts from 08:00 to 09:00 CET with the opening price being established at 09:00 CET onwards using the primary market opening price which is passed back upstream as a trade correction from 09:00 CET (Chi-X 2007). For the purpose of price continuity, Chi-X conducts price tolerance checks for orders. Those orders that breach the price checks will automatically be rejected by the system. Stocks are traded in their official local currency, i.e. Euros for our CAC-40 stocks. The minimum tick size for Eurozone stocks depends on a respective stock’s price range and varies between .001 Euros for a share price of less than one Euro to .005 Euros for a share price that equals at least 10 Euros.

As presented above, both market structures exhibit similar market design characteristics for our sample of CAC-40 stocks in a way that they are traded continuously in an electronic order book and trading is organized order-driven. Both exchanges feature visible as well as non-displayed order types whereby the latter imposes a limitation in our dataset which will be addressed in the next subsection.

3.2. Dataset

After launching its services for German and Dutch blue-chip equities at the end of March 2007 and adding UK blue-chip equities to its list of tradable instruments three months later, Chi-X on September 28, 2007 commenced to provide trading services for French instruments with an initial selection of 19 stocks, all of them constituents of the CAC-40 blue chip index. That range of tradable instruments was extended by another 18 CAC-40 stocks on October 12, 2007. Those 37 French stocks will form our sample instruments\(^1\), split into panels A and B.

For these 37 instruments, order book data of the ENP and Chi-X markets have been retrieved from a Reuters Data Scope Tick History terminal. Those data include quoted prices and respective volumes for the first ten limits on each side of the electronic order book, i.e. the ten highest bid and ten lowest ask limits. Time stamps provided in our data are based on milliseconds, and each change in the order book within the first ten limits generates an update in the dataset. Data on average daily turnover during the months preceding the event date is available from Deutsche Börse’s and Euronext’s websites.

Although ENP and Chi-X both feature non-displayed order types in their market models, publicly available order book data lack this hidden liquidity. Thus, we can measure the change in displayed liquidity following the Chi-X market entry, not the change in overall (hidden and displayed) liquidity. The change in displayed liquidity could therefore underestimate or overestimate overall liquidity changes when e.g. order flow has been shifted from displayed to hidden. Moreover, we do not have any secured information on volatility interruptions, but this is not a severe issue in our case (as will be shown in the next subsection on methodology).

3.3. Methodology

For our study on the impact of a new competitive market on liquidity we have selected two sample periods for each panel. The first period includes the last 60 days before a respective stock was made available for trading on Chi-X and thus we will refer to it as our pre-entry period. The second period includes the 30 days following the entry of Chi-X and thus will be referred to as post-entry phase. We chose to apply a longer interval for the pre-entry period than for the post-entry period in order to obtain a robust estimator for the regular liquidity level not influenced by any short-term market disturbances. For all 37 sample stocks we checked whether any of them have dropped out and been replaced in the CAC-40 index during any of the sample periods. We additionally confirmed that no other new execution venue commenced trading during any of the sample periods.

For our purposes we use limit order book snapshots. The snapshot data contain the ten best bid and ask quotes and the number of shares offered at these quotes, sampled every 5 minutes in both ENP and Chi-X. We also aggregate these data across both markets and create a snapshot of the

\(^1\) Three of the CAC-40 stocks (ArcelorMittal, Lagardère, Michelin) have never been made available for trading on Chi-X.
consolidated limit order book. Time triggered auctions, i.e. opening and closing auctions, are excluded from computations as we intend to study continuous trading only. The duration of event-triggered auctions in ENP induced by a violation of price continuity is only a few minutes and therefore the probability of capturing a snapshot coincidentally in an auction seems to be negligible. Besides, given our setup of order book snapshots and the number of observations, a single snapshot has very little weight in our dataset and thus a snapshot captured involuntarily during an auction period potentially has little bias on our results.

In order to illustrate possible changes in order book liquidity before and after the Chi-X entry we will apply three variables, namely (i) the relative quoted spread, i.e. the ratio of the bid-ask spread and the midpoint, (ii) the value at the top of the book, i.e. the number of shares at the top of the book for both sides multiplied by the associated quote and (iii) the Exchange Liquidity Measure (XLM) for a value of 100,000 Euros as developed in Gomber, Schweickert and Theissen (2004). We use the third measure to capture order book depth, i.e. the order book liquidity beyond the best bid and ask. The XLM measures the execution costs of a round-trip transaction and uses the information about all the orders in an order book to calculate the weighted average price at which an order of given size (Euro-denominated in our case) could be executed immediately at time t. Denote these prices by $P_{B,t}(V)$ and $P_{S,t}(V)$ where the index (B, S) indicates the type of the transaction (buyer-initiated or seller-initiated) and V denotes the order size. Let MQ_t denote the quote midpoint at time t. Execution costs for a buy and a sell order in basis points are calculated by

$$\text{XLM}_{B,t} = \frac{P_{B,t}(V) - MQ_t}{MQ_t} \times 10,000$$

$$\text{XLM}_{S,t} = \frac{MQ_t - P_{S,t}(V)}{MQ_t} \times 10,000$$

For the execution costs of a round-trip transaction at time t both measures are added up. A similar measure has been suggested in Irvine, Benston and Kendal (2000), as they considered spreads not to be sufficient measures for market liquidity. For the XLM, we will assume round-trip transactions of V=100,000 Euros.

In our setup we estimate the means of these variables, changes in these means, and test for the statistical significance of these changes applying panel data techniques. For testing the significance of changes in the means we assume that a dependent variable $y_{i,t}$ for stock i and day t can be expressed by adding up a stock-specific mean μ_i, an event effect δ_i, potential control variables $X_{i,t}$ and an error term $\varepsilon_{i,t}$:

$$y_{i,t} = \mu_i + \delta_i [t \text{ in post - entry period}] + \beta'X_{i,t} + \varepsilon_{i,t}$$

$$\varepsilon_{i,t} = \xi_{i,t} + \eta_{i,t}$$

where $I_{t \text{ in post - entry period}}$ is an indicator variable which equals 1 if t lies within the post-entry period and where $X_{i,t}$ contains our control variables price level, volume, and volatility. The error term is made up by a factor common to all stocks and a stock-specific term. We will compute the changes within the quartiles of our two panels A and B as

$$\mu_p = \frac{1}{N_p} \sum_{i \in I_p} \mu_i$$

$$\delta_p = \frac{1}{N_p} \sum_{i \in I_p} \delta_i$$

where p is the quartile index, N_p is the number of stocks in the respective quartile and I_p contains the indices of the stocks in quartile p. δ_p will indicate the impact of the Chi-X entry on a respective dependent variable.
RESULTS

Table 1 presents the mean daily turnover in the stocks from panel A and panel B, respectively. Generally, we observe that the set of stocks that were made available for trading at the earlier date (panel A) exhibits a significantly higher mean daily turnover than the stocks from panel B. We clustered the stocks within each panel according to their mean turnover into four quartiles (Q1 to Q4) in order to obtain subgroups as homogenous as possible for later comparisons.

<table>
<thead>
<tr>
<th>Quartile</th>
<th>Panel A</th>
<th></th>
<th>Panel B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>RIC Instrument</td>
<td>Mean</td>
<td>RIC Instrument</td>
<td>Mean</td>
</tr>
<tr>
<td>Q1</td>
<td>SOGN SOCIETE GENERALE</td>
<td>266.0</td>
<td>VLLP VALLOUREC</td>
<td>82.1</td>
</tr>
<tr>
<td></td>
<td>TOTF TOTAL</td>
<td>263.0</td>
<td>SCHN SCHNEIDER ELECTRIC</td>
<td>82.0</td>
</tr>
<tr>
<td></td>
<td>BNPP BNP PARIBAS</td>
<td>238.0</td>
<td>CAGR CREDIT AGRICOLE</td>
<td>80.8</td>
</tr>
<tr>
<td></td>
<td>AXAF AXA</td>
<td>170.0</td>
<td>ALSO ALSTOM</td>
<td>73.2</td>
</tr>
<tr>
<td></td>
<td>LTE FRANCE TELECOM</td>
<td>169.0</td>
<td>LAFP LAFARGE</td>
<td>69.2</td>
</tr>
<tr>
<td>Q2</td>
<td>SGOB SAINT GOBAIN</td>
<td>149.0</td>
<td>CAPP CAP GEMINI</td>
<td>51.7</td>
</tr>
<tr>
<td></td>
<td>SASY SANOFI-AVENTIS</td>
<td>143.0</td>
<td>EAD EADS</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td>LYOE SUEZ ENVIRONNEMENT</td>
<td>128.0</td>
<td>VIE VEOLIA ENVIRON.</td>
<td>50.8</td>
</tr>
<tr>
<td></td>
<td>ALU ALCATEL-LUCEQNT</td>
<td>113.0</td>
<td>EDF EDF</td>
<td>50.1</td>
</tr>
<tr>
<td></td>
<td>CARR CARREFOUR</td>
<td>102.0</td>
<td>BOUY BOUYGUES</td>
<td>43.6</td>
</tr>
<tr>
<td>Q3</td>
<td>RENA RENAULT</td>
<td>97.9</td>
<td>ACCP ACCOR</td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td>DANO DANONE</td>
<td>90.9</td>
<td>UNBP UNIBAIL-RODAMCO</td>
<td>38.9</td>
</tr>
<tr>
<td></td>
<td>VIV VIVENDI</td>
<td>87.4</td>
<td>PRTT PPR</td>
<td>37.9</td>
</tr>
<tr>
<td></td>
<td>SGEF VINCI (EX.SGE)</td>
<td>76.7</td>
<td>DEXI DEXIA</td>
<td>33.9</td>
</tr>
<tr>
<td></td>
<td>LVHM LVMH</td>
<td>65.5</td>
<td>AIRF AIR FRANCE-KLM</td>
<td>33.5</td>
</tr>
<tr>
<td>Q4</td>
<td>OREP L'OREAL</td>
<td>63.4</td>
<td>PERP PERNOD RICARD</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td>AIRP AIR LIQUIDE</td>
<td>59.1</td>
<td>GAZ GDF SUEZ</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td>PEUP PEUGEOT</td>
<td>52.7</td>
<td>ESSI ESSIOL INTL.</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>STM STMICROELECTRONICS</td>
<td>39.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Quartiles (by daily turnover in million Euros) in panels A and B^2

As mentioned earlier, XLM captures the depth of the order book. Calculating the XLM for a volume of 100,000 Euros requires the order book to exhibit sufficient depth to – theoretically – fill a round-trip order of that size. Typically, this is not the case at all times, leading to a number of instances where XLM cannot be computed due to insufficient order book depth. We were unable to compute XLM(100,000) during the pre-entry phase for ENP in 11.1% (panel A stocks: 4.9%, panel B stocks: 17.7%) of our observations and during the post-entry phase in 13.6% (panel A stocks: 5.9%, panel B stocks: 21.8%) of the observations.

When examining two execution venues, the possibility for arbitrage situations exists. Arbitrage is defined as “the simultaneous purchase and sale of the same, or essentially similar, security in two different markets for advantageously different prices” (Sharpe and Alexander, 1990). In a perfect world without transaction costs, an arbitrage situation would instantly be resolved by traders simultaneously buying at the one market and selling at the other, thereby realizing a riskless profit. However, when virtually consolidating the order books of two markets during an arbitrage situation, no orders are matched. The result thus is the hypothetical situation of a crossed order book, i.e. a situation where the highest bid is lower than the lowest ask price. Computing the XLM in such a situation will result in an XLM<0, which is economically not justifiable. Consolidated order books exhibit on average 49.9% of negative XLMs (panel A stocks: 56.3%, panel B stocks: 43.2%), which is a strong indicator for aggressive quoting behavior of the new entrant.

Following Petersen (2009) for testing of significances of changes in the means (of pre- and post-entry), we apply Rogers standard errors which control for commonalities across stocks, heteroscedasticity, and non-zero stock-specific autocorrelation to our model as described in the methodology section. First, we ran our regressions in a univariate setup without any controls and found the event to have a significant impact on ENP market liquidity for most stocks. As liquidity changes might be associated with factors other than the Chi-X market entry, we isolate its effect on

^2 RIC = Reuters Instrument Code
market liquidity by running our regression with control variables price level (defined as the average daily midpoint quote), traded volume and volatility (defined as the standard deviation of midpoint quotes over a respective trading day). Only the findings from the multivariate approach will be presented in the following. Table 2 reports the changes for the liquidity variables relative spread, XLM(100,000), and quoted value at best bid and ask in the quartiles of panels A and B for the incumbent market ENP.

Here, Change Qi (δ_i) denotes the regression coefficient (as denoted in the previous section) associated with the Chi-X market entry for stock quartile i. Rel. Change reports a variable’s change relative to its pre-entry level. With the control variables described before, our findings for the liquidity changes are more heterogeneous than in the univariate setup, particularly across panels A and B. Liquidity in terms of relative spread and XLM, which denotes the transaction costs of a round-trip trade, improves statistically significantly (by 19.11 percent and 16.58 percent respectively at the maximum) for stocks in panel A except for quartile 2, while the quoted volumes at the best bid and ask experience only slightly positive changes after the Chi-X entry. These facts should be interpreted as a more aggressive quoting behavior in the incumbent market ENP induced by its new competitor’s market entry. As quoted volumes remain mostly unchanged, aggressiveness here relates mainly to the quotes themselves rather than their associated numbers of stocks posted in the central limit order book. Nevertheless, these changes result in reduced trading costs for investors investing in those stocks. For stocks in panel B our findings are different. As described before, stocks included in panel B have been made available for trading on Chi-X a few weeks later than those in panel A and in general exhibit less trading activity. As reported in table 2, when controls for price level, traded volumes and volatility are included, Chi-X entry induced changes are not statistically significant for ENP with only a few exceptions. While for quartiles 2 to 4 relative spreads and XLMs are found to decrease, this does not hold for the first quartile. For stocks included in quartile 1 relative spreads and XLMs even increase after the event (although not significantly). Surprisingly and in contradiction to our findings for panel A, the (visible) volumes posted at the best bid and ask decrease in the post-event period for all quartiles in panel B, although changes are not statistically significant.

As mentioned before consolidating over ENP and Chi-X electronic order book snapshots in the post-period resulted in large part in crossed order book situations. In consequence those situations should have been eliminated from our dataset when measuring post-entry period market liquidity in a hypothetical consolidated order book as spreads and XLM values turn to be negative. Therefore we refrain from reporting regression results for the consolidated order book. Nevertheless, we presented evidence that liquidity in the incumbent market ENP has significantly increased for the majority of stocks in panel A after the Chi-X market entry. These findings can be combined with the fact that consolidated order books are crossed in many cases due to an apparently aggressive quotation behavior from traders on the new competitor Chi-X. Necessarily, it appears that overall liquidity available to investors has increased even more in those stocks, when they make use of appropriate technologies to access both markets and route their order flow at best conditions.

CONCLUSIONS AND OUTLOOK

With the introduction of MiFID, equities trading in Europe moved from national concentration rules to a fragmented and competitive landscape of trading venues that require investors to adopt new technologies such as SOR systems in order to efficiently make use of liquidity available in more than one market. This paper contributes with an analysis of the impact of new execution venues on the liquidity of incumbent European equity markets.

We investigated the impact of new competitive equity market entrant Chi-X on the incumbent market’s liquidity as well as on the liquidity consolidated in a hypothetical order book for a set of French blue-chip stocks from the CAC-40 index. In summary, our findings suggest that the emergence of the new competitor generates a significant stimulus for the liquidity of the most actively traded stocks in the CAC-40 index. This can be attributed to a positive liquidity effect in the incumbent market after the event on the one hand and an aggressive quoting behavior from investors trading in the new marketplace on the other hand.
As further research steps, we intend to compare these results against a sample of matching stocks in order to eliminate potential cross-market liquidity effects. To examine the sustainability of our findings, it seems worthwhile analyzing different post-entry periods in the long run.

Table 2. Liquidity changes with controls for volume, price level and volatility for Euronext

<table>
<thead>
<tr>
<th></th>
<th>Panel A</th>
<th>Panel B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relative spread XLM Depth BB Depth BA</td>
<td>Relative spread XLM Depth BB Depth BA</td>
</tr>
<tr>
<td>Change Q1 (δ1)</td>
<td>-0.51 * -0.91 ** 8.97 9.99</td>
<td>-0.07 0.41 -3.01 -5.06 *</td>
</tr>
<tr>
<td>Rel. Change Q1</td>
<td>-11.32% -13.39% 5.50% 5.11%</td>
<td>1.44% 5.83% -7.63% -10.17%</td>
</tr>
<tr>
<td>Change Q2 (δ2)</td>
<td>-0.58 -1.09 -2.44 4.5</td>
<td>-0.47 -0.21 -4.01 -1.71</td>
</tr>
<tr>
<td>Rel. Change Q2</td>
<td>-9.36% -11.26% -4.35% 1.08%</td>
<td>-9.71% -6.58% -5.09% -1.02%</td>
</tr>
<tr>
<td>Change Q3 (δ3)</td>
<td>-1.36 ** -1.85 ** 1.18 4.72</td>
<td>-0.82 -0.41 -6.91 * -4.95</td>
</tr>
<tr>
<td>Rel. Change Q3</td>
<td>-19.11% -16.58% -0.35% 4.75%</td>
<td>-9.01% -2.01% -10.67% -7.14%</td>
</tr>
<tr>
<td>Change Q4 (δ4)</td>
<td>-1.06 * -1.51 ** 12.13 14.72</td>
<td>-1.05 -1.92 -0.87 0.12</td>
</tr>
<tr>
<td>Rel. Change Q4</td>
<td>-14.65% -14.08% 14.45 17.03%</td>
<td>-9.97% -10.47% -3.10% -1.02%</td>
</tr>
<tr>
<td>Change All Quartiles</td>
<td>-0.81 ** -1.34 ** 8.48 * 11.95 **</td>
<td>-0.66 * -0.55 -4.00 ** -3.08 *</td>
</tr>
<tr>
<td>Rel. Change All Quartiles</td>
<td>-13.66% -13.87% 2.78% 5.81%</td>
<td>-6.97% -3.20% -7.19% -5.15%</td>
</tr>
<tr>
<td>R2</td>
<td>0.28 0.18 0.54 0.56</td>
<td>0.05 0.11 0.25 0.24</td>
</tr>
<tr>
<td>No. of Observations</td>
<td>1216 1216 1216 1216</td>
<td>1216 1216 1216 1216</td>
</tr>
</tbody>
</table>

* / ** significant at 95 / 99 percent level
REFERENCES

