IDENTITY MANAGEMENT IN BUSINESS PROCESS MODELLING: A MODEL-DRIVEN APPROACH

Heiko Klarl
Media Computing, University of Regensburg

Christian Wolff
Media Computing, University of Regensburg and iC Consult GmbH

Christian Emig
Cooperation & Management, University of Karlsruhe (TH)

Follow this and additional works at: http://aisel.aisnet.org/wi2009

Recommended Citation
http://aisel.aisnet.org/wi2009/20

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in Wirtschaftsinformatik Proceedings 2009 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
IDENTITY MANAGEMENT IN BUSINESS PROCESS MODELLING: A MODEL-DRIVEN APPROACH

Heiko Klarl¹,², Christian Wolff³, Christian Emig³

Abstract
The modelling of business processes is widely used in enterprises. Though this is very common, requirements for identity management and access control are often collected separately in documents or requirement tools. Due to the business-driven background of access control, this kind of requirement should be collected at the business site’s business process model. This work introduces a meta-model for modelling access control requirements at the business process level. It combines the model and its requirements, reducing the risk of inconsistencies caused by process changes. A model-driven development process utilises the enriched models for generating policies for different identity management products.

1. Introduction

The success of the internet, the ongoing globalisation and resulting needs for faster communication and interaction with business partners as well as the implementation of new law and business regulations like Basel II or Sarbanes-Oxley Act [6] lead to a demand for new solutions. Service-oriented architecture (SOA) tries to cope with those needs: The service-oriented architecture paradigm often uses the modelling of business processes, which is widely used and supported by a variety of well established notations [20, 32, 34] and tools. Despite these facts, (non-functional) requirements which are strongly related to the business process are commonly not integrated in its model. A lot of non-functional requirements arise in the area of identity management (IdM) [1], where access control is an important part. Currently, these IdM-related requirements are often “specified” in a non-formalised manner as unstructured text by the business department. If these specifications are not complete and cannot be understood by the IT security department, a complicated and error prone coordination process between both departments arises [cf. 7]. At this time, the application owner – namely the business department – loses its “requirement sovereignty”. Therefore it is highly dependent on the support of another department in formulating their own IdM requirements. Such a separation of the business process model and its related IdM requirements may easily result in inconsistencies if changes are not adapted immediately in all specification documents. In the following, we suggest a solution for this problem by enriching the business process model with a specification of IdM requirements. The model is used as the origin of a model-driven software development approach to generate concrete access control policies for

¹ Media Computing, University of Regensburg, Germany
² iC Consult GmbH, Keltenring 14, 82041 Oberhaching, Germany
³ Cooperation & Management, University of Karlsruhe (TH), Germany
service-oriented architectures. This work is based on a cooperation project between iC Consult GmbH, an independent service provider in the area of identity management, the department of Media Computing at the University of Regensburg and the research group Cooperation and Management at the University of Karlsruhe. The paper is organised as follows: Section 1 gives a short introduction to identity management and its relation to business process management. In section 2, we introduce our UML2 Profile for IdM as well as the Web Services Access Control Markup Language (WSACML), an access control meta-model for service-oriented architecture. Based on both specifications, a model-driven policy development process is described. The application to a real business scenario from the banking domain is shown in section 3. Section 4 discusses related work, and section 5 concludes the paper.

1.1. Main Aspects of Identity Management

With the increasing complexity of the IT landscape in enterprises and the penetration of nearly all critical business processes by information technology, identity management is a key factor and one of the main building blocks of IT security [13]. IdM comprises authentication of identities, the authorisation of resource access as well as the logging of all events relevant for auditing requirements. These three pillars of IdM are embedded in several processes in order to mitigate its complexity. Policies containing permissions build the base for access control decisions [27]. They state whether an authenticated subject is allowed to access or interact with an object or a resource within the IT system. In the scope of regulations (e.g. the Sarbanes-Oxley-Act or Basel II), the requirements for the administration and documentation of access permissions and policies lead to a demand for sophisticated IdM solutions. A reference architecture for such a solution is shown in [3]; [17] describes an architecture for IdM in federated environments.

1.2. Identity Management and Business Process Modelling

The importance of business processes models became obvious with the idea of business process reengineering [15] in the 90ies and with the upcoming of the service-oriented architecture paradigm [36]. The nearly arbitrary combination of single sub-processes or loosely coupled services to business processes in the sense of service-orientation is only possible on the base of meaningful and executable models. This enables enterprises to cope with market challenges and new business regulations in a flexible and agile way [36]. The focus lies on the optimal support of the business process whereas the IT plays a supporting role in the background. The modelling of business processes can be done in different notations like Event-driven Process Chains (EPC) [20], the Business Process Modeling Notation (BPMN) [32] or the behaviour diagrams of the Unified Modeling Language (UML) [34].

The short lifecycle of business processes and their opening to other businesses in the context of B2B-scenarios requires a constant adoption of IdM requirements in order to reach and guarantee high security standards [21]: On the one hand, functional specifications regarding identities, roles and permissions are constantly changing, on the other hand, changing specifications of the organisational layer, e.g. for supporting privacy or avoiding corruption play an increasing role in enterprise security. In order to meet these demands, traditionally hard coded security mechanisms are replaced by dynamic policies which are changeable at runtime.

Closing the gap between specification of IdM requirements in documents and requirement management tools and the business process' model is still not done, resulting in different complementing specifications [11, 16, 25, 37]. The coupling of the business process' models and its security requirements will ensure a consistent state over all changes – functional ones as well as
those affecting security issues. The management of security relevant aspects will be tied stronger to
the business process' development, avoiding inconsistencies in its protection. The business
department should be supplied with tools not only for modelling their processes, but also for
integrating their IdM requirements in those models.

2. Modelling and Transforming IdM Requirements within Business Processes

In order to cope with the problems described above and to force the coupling of business process
and its security requirements, we propose the modelling of requirements in business process
models. A model-driven approach that generates concrete security policies based on the models
will be introduced in the following sections.

2.1. The Development Process and its Relation to Model-driven Architecture

The development process typically starts with defining the business process in the business
department. Preparatory steps like use-case analyses or textual specifications etc. are not in the
focus of this paper: Our contribution starts with the business process already modelled and we see
this point as the computational independent model (CIM) in the sense of OMGs' Model-driven
Architecture (MDA) [31]. In this view, the CIM contains all information of the business process –
enriched with security specifications based on the UML2 profile for IdM. A semi-automatic
transformation process with possible manual additions leads to the platform independent model
(PIM), containing only security specifications at a platform neutral level. A meta-model for this has
been presented as WSACML in [8]. Its generic design does not include any (security) product
specific elements, so that the last transformation step can create platform specific code (PSC) for
different platforms like CA SiteMinder or IBM Tivoli Access Manager.

2.2. Securing a Business Process by the UML2 Profile for Identity Management

The business department should be able to define its own or compliance-driven IdM requirements,
using their specific domain knowledge in business process modelling. This enables a fully model-
driven software development process, starting with the modelling of IdM requirements in the
business department and resulting in security policies for a specific software system.

We utilise UML behaviour diagrams, especially activity diagrams, used for modelling data- and
control flows as well as workflows [4, 35]. UML itself is based on a meta-model supported by a
variety of tools and known and accepted in enterprises. The UML profile mechanism offers a
lightweight approach to extend this meta-model. This can be done by adding new elements for
special domains without losing UML’s tool support. Stereotypes do not change the meta-model but
extend and specify existing UML meta-classes for special use-cases. New elements are named and
can immediately be used as the profiles' elements. Constraints are used in order to restrict elements
in their behaviour, and can be expressed in prose, (pseudo-) programming languages or in dedicated
languages like OCL (Object Constraint Language) [33]. Constraints must not be in conflict with
inherited constraints of the meta-class. Tagged values are key-value-pairs, enriching stereotypes
with additional information. UML’s syntax and semantic is not touched by UML profile extensions.

The UML2 profile for IdM supports the modelling of access control policies within activity
diagrams. In case of a business process it offers the possibility to represent its behaviour as well as
its constraints for accessing certain actions. The model of the UML2 profile for IdM is shown in
Figure 1. The element «IdMAction» extends the UMLs' activity diagram element «action»,
indicating that this must be secured by the IdM infrastructure. It contains the attributes
complianceClassifier and securityClassifier providing the possibility to classify the element
according to its compliance and security guidelines. Those are defined at the enterprise architectural level. The container element «Policy» links single «Permission» elements in a disjunctive manner; this allows the reuse of «Permission» elements in different «Policy» elements or policies. «Policy» owns the same classification attributes as «IdMAction». In order to avoid conflicts due to contradicting policies as well as to reduce complexity at the business process level, only one policy may be assigned to an «IdMAction». «Permission» elements encapsulate one or more «Assertion» elements for covering one access control situation. The element «Assertion» contains the positive access control statement, allowing access on resources. This means that every access authorisation has to be defined in a dedicated permission. An «Assertion» element aggregates «SubjectAttribute», «ObjectAttribute», «EnvironmentAttribute», «InputParameter» and «Constant».

Figure 1: The UML2 Profile for Identity Management

The object being accessed is described by the «ObjectAttribute». A sophisticated enterprise architecture with well-defined business objects types supports the selection of relevant object attributes tremendously. «EnvironmentAttribute» contains metadata such as time, date and the systems conditions whereas «InputParameter» specifies input data. For comparing attributes with specific values, «Constant» is used. In case the business department was not able to properly define an adequate policy with these modelling concepts, a «DraftedPermission» contains access control statements without formalisation, i.e. descriptions of the desired behaviour in prose. These drafts must be refined by business security analysts resulting in a valid set of «Permission» and «Policy» elements. «IdMRole» extends the concept of activity partitions in order to assign business roles to «IdMAction» elements. The same pieces of information can also be covered by utilising «SubjectAttribute» to describe the business role of the accessing subject – which reduces the visual complexity in case of dozens of roles involved in a business process. We consider the description
of roles not in the classical role-based access control (RBAC) [10] manner but define a business role as a set of subjects attributes as described in [42]. «IdMActivityGroup» allows grouping of elements for assigning a «Policy» or «DraftedPermission» only once to a set of elements. An overview regarding the elements' constraints defined in the meta-model is given in [22].

2.3. WSACML – An Access Control Meta-model for Web Service-Oriented Architecture

Looking at the mass and complexity of the existing and upcoming specifications in the web service security area like WS-Security, WS-Trust, SAML, extensible Access Control Markup Language (XACML) or the Liberty Alliance’s stack proposal [12, 30], it is comprehensible that software developers often neglect the web service security part. Additionally, state-of-the-art IdM suites are not yet prepared for web service-oriented architectures and their accompanying standards [29]. At the same time application servers often do not yet support necessary combinations of relevant IdM standards. This is why currently existing web services in most cases have little or no security features. In [8] we have introduced WSACML, an access control meta-model for web service-oriented architectures which is utilised as meta-model for the platform independent model (PIM). It eases its use, as complexity like in XACML is reduced. WSACML describes policies at the PIM level, which means that they are specified with detailed technical resource descriptions etc. but platform specific details and notations for security products are not covered. This is done by a last transformation shown in detail in [9].

2.4. From the Business Process to Concrete Security Policies – The Transformation Process

Figure 2: Overview of Model-driven Policy Development

In order to create security policies for a certain IdM product, we have implemented a prototypical model-driven transformation process with two transformations (cf. Figure 2). To ease the implementation process we utilise a XML-based transformation approach. We generate XML schema definitions (XSDs) based on the meta-models for the CIM and PIM introduced in the previous sections and use them as a template for valid policy information. We start with a business process that has already been modelled and which has been annotated with security policies and extract security-specific information to a XML file (cf. Listing 1). In a second step a Java-based application parses this XML-file structured according to the rules of our XSD and transforms the elements according to the mapping rules shown in Table 1. Then it checks the compliance with constraints described in [22]. During the transformation process a manual enrichment has to be done by a business security analyst. This analyst should be able to provide additional information for a fine tuning of the security requirements for the platform independent model.
The first transformation process results in a WSACML policy shown in Listing 2. Utilising the transformation described in [9], the generation of platform specific code (PSC) comes into play: WSACML policies are transformed into security policies for a certain product. This requires knowledge on the policy-model of the specific security software product. Further information will be provided in [9]. Currently, our transformer tool supports the generation of CA SiteMinder policies. A support for IBM Tivoli Access Manager is under development at the moment.

3. Example: Securing a Banking Process

In the banking area business processes are changing often, caused by a very dynamic and customer-driven market environment. As a typical example we choose the opening process for a current account. As the presentation of the complete process might well go beyond the scope of this paper, we show only sections of the process as this should be enough to get an idea of how our method is applied to secure the business process. Figure 3 shows the business process model with security-
related information added. After a general contract has been created by an account manager, the opening of a current account is checked. When the application for a current account is formally correct, a credit rating service is called, followed by a scoring by another service. These actions are secured by the Check Account Opening Policy. The policy limits the roles that are allowed to execute those actions to the role 'Account manager' and it may have some contextual restrictions like 'Opening a current account is allowed only at the office times from 7am to 7pm'. If there are no exceptions, the current account will be created; otherwise, the opening is delegated to the clerk's supervisor who may override some kind of exceptions (exception score lower than four). This is represented by the Override Scoring Policy shown in Listing 1 which limits the executing role to 'Account manager (AM) in chief' and the exception level lower to four.

4. Related Work

Concerning the integration of requirements in models, many papers have been published recently. The state of the art can be divided into two major parts: On the one hand, high-level models for usage at business departments, on the other hand, IT-centric models like UML class diagrams that are enriched by annotations and requirements. In the area of models for usage at the business site [23] extends the UML activity diagram enabling a modelling of business and performance goals for use with concepts like balanced scorecard. An extension for the UML activity diagram to model event-driven process chains (EPC) is shown in [24]. In both papers UML is extended via its profile mechanism.

In the area of information security a meta-model for descriptive collection of requirements is shown in [37, 38]. It is applied to the UML activity diagram via an UML profile as well as to BPMNs' meta-model. Stereotypes like SecurityAuditing or SecurityRequirement are introduced for usage in the business process model in order to visualise requirements for auditing or the core security requirements like authentication, authorisation and non-repudiation. Nevertheless, most of this work remains at a descriptive level. The stereotypes introduced are just simple annotations comparable with classified comments. In [39] Rodríguez et al. propose the generation of use case views out of business process models which are examined for security requirements. As in their previous work [37, 38], there are no possibilities to specify requirements directly in the business process model and the proposed approach can be only used to find security problems at a high level view. Round trip engineering is missing, so that results found in the use case diagrams can not be added to the processes' model.

In [40] another solution for modelling security goals in BPMN is introduced: A generic security model captures the relations between basic entities like objects, attributes, interactions and effects. The model includes views on the enterprise architectural space which allows connecting elements
from different perspectives. However, it lacks a relationship with the model-driven approach as well as definitions of how policies can be formulated, stored and administrated. In their previous work ([41]) Wolter et al. have proposed an extension of the BPMN for including authorisation constraints which are strongly focused on a separation of duties (SoD). Utilising XSLT transformations, the XML representation of the enriched business process is used for generating XACML policies. However, they do not discuss the modelling of complex access control scenarios. In contrast to our work, their target model is XACML – this is basically a good idea as it is a standard – but as the application of XACML policies in standard access control products is only partly possible, it would be better to generate concrete policies for certain products.

In the area of workflow security, some further work has been published. In [14] a UML based approach for applying security requirements to the Web Service Choreography Description Language (WS-CDL) is proposed. A UML model of the workflow is enriched with security artefacts and could be translated to XML code files that comply with web services standards. As this enrichment is done on a technical level, the procedure will not be viable for the typical business department. Bertino et al. present in [2] how Web Services Business Process Execution Language (WS-BPEL) is enriched by authorisation constraints and authorisation information for access control. They introduce the Business Process Constraint Language (BPCL) which allows formulating the authorisation constraints. A WS-BPEL engine has been extended to be able to interpret these access control constraints. BPCL is limited to users, roles and activities. Attribute-based access control which we propose as the optimum for service-oriented architecture is not supported. Due to its technical focus, it is not adequate for use at a business department.

Patterns for securing web services are proposed in [18]. The so called idioms were applied to orchestrated services and contain technical solutions and templates for predefined threat scenarios. They cover non-functional requirements but only at the orchestration level. An explicit possibility for modelling access control policies or IdM requirements is not given.

Looking at IT-centric research, in [19] an UML profile called UMLsec for modelling safety critical systems is shown. It supports the enrichment of UML class models with security relevant information. Its focus is to support software developers who already are knowledgeable in the security area. The recording of access control policies, especially at the business departments' level is not covered. An UML-based modelling notation combined with a notation for specifying access control models is shown in [26]. This approach is also placed rather late in the software development process, as the requirements are modelled at the class diagrams' level. In [5], Breu et al. propose a model-based development of access policies combining a predicative language (OCL) with XACML as an access policy standard. Access permissions can be specified for methods and method categories at a technical level. A Java-based tool allows the generation of XACML policies. Like other approaches mentioned before, the technical focus of this approach will most likely prevent its application in the context of business departments. Neubauer et al. cover in [28] aspects of secure business processes and its administration. The roadmap of a secure business process is shown in its different stages regarding the inclusion of security aspects. At the second stage he describes the security enriched business process as a base for workflow systems.

Looking at related work, there is on the one hand a very strong focus on business aspects with no possibilities of integrating security requirements. On the other hand the modelling of security requirements is possible on a deeper, workflow or technical level. These solutions often require specialised knowledge of modelling and the architectural aspects of software systems as well as a wide and detailed knowledge on security solutions. Altogether, a gap between modelled business processes at the business departments’ site and documents and tools containing the business process' security specifications remains.
5. Conclusion

In this paper, we propose a model-driven development process for the creation of access control policies in the context of service-oriented architectures. The development starts with the business process model at the business departments' level, where computational independent process models are enriched with elements for specifying requirements for identity management. Transformation processes translate the model to concrete security policies for different commercial products. The novel aspect of this approach is the direct application of IdM requirements specifications to business process specifications. Thus, the model-driven generation of access control policies can be supported. There is no need for document-based requirement specifications, because all requirements are captured in the business process model where the domain knowledge is available – in the business department. This work lays the fundament by proposing how access control policies can be specified in business processes. Future work will be done on improving the graphical modelling of the business process and its security requirements. The business department will be supported by easy to handle tools, with optimised usability for modelling security enriched business processes. The modelling process will be complemented by utilising policy and business objects repositories to benefit from (re)using existing data. Another aspect being worked on will be the checking of secured business process models for being in compliance with the enterprise’s security standards or law regulations.

6. References

All web references were checked on 28th July 2008.