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Despite significant attention given to effects of early exposure on acceptance and adoption of new systems, there 
continues to be ambiguity regarding its effectiveness beyond a threshold. For organizations concerned with optimal 
utilization of IT resources, a deeper understanding of ideal levels of early system exposure can result in greater 
realization of benefits through enhanced design of system training and mitigation of adverse effects of exposure on 
adoption. In this article, we propose that the relationship between system exposure and acceptance can 
demonstrate diminishing gains—as early exposure to a system increases beyond a reasonable level, its acceptance 
declines. Preliminary findings from an enterprise-wide system implementation suggest that exposure through pre-
launch system trials results in diminishing system acceptance beyond an optimal point. We draw on learning and 
response-stimuli literature to interpret this early evidence. The article concludes with research propositions, 
recommendations, and implications for practice. 
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I. INTRODUCTION 

In today’s dynamic business environment, Information Technology (IT) investments have transitioned from being 
perceived as optional expenses toward organizational competitiveness to being a necessary component of individual 
and organizational productivity [Osei-Bryson and Ko, 2004; Brynjolfsson and Hitt, 1996]. Higher levels of technology 
adoption and increased readiness for such adoption have a direct bearing on the realization of benefits from IT 
investments [Lin, Huang, and Burn, 2007]. Demanding economic times as the present, however, challenge IT 
managers to justify investments and expeditiously elicit business benefits from them [Bannister and Remenyi, 2000]. 
Under such constraints, IT divisions will often cut back expenses on system training initiatives [Gallivan et al., 2005] 
instead of exploring mechanisms for accelerating individual and organizational acceptance of new technologies to 
maximize benefits from these investments. 

Over several decades, Information Systems (IS) research has examined a range of factors that promote individual 
adoption behaviors. In particular, the role of organizational factors such as firm size, financial resources, and 
dynamic capabilities [Teng and Nelson, 1996; Teo and Pian, 2004; Daniel and Wilson, 2003], individual factors such 
as gender, culture, computer experience, and personal innovativeness [Agarwal and Prasad, 1998; Gefen and 
Straub, 1997; Straub et al., 1997], system-related factors such as complexity, trialability, relative advantage, and 
system exposure [Gallivan et al., 2005; Rogers, 1995; Moore and Benbasat, 1991], have been explored to 
significant depth. In the short run, firms looking to improve system adoption behaviors among their users have 
limited influence over organizational, cultural, demographic, and system factors. In contrast, system exposure is 
completely under control of management [Cheney et al., 1986] and can be most directly and immediately 
manipulated in order to expedite and enhance system adoption behaviors. At the least, organizations can 
experiment with the type of system exposure (e.g., formal systems training versus self-directed system trials), the 
system development phase during which such exposure is provided, and the amount of exposure. With the 
supposition that the type of system exposure and timing of its offering will be largely defined by the nature and 
complexity of the system, in this article we focus on the duration of system exposure on its acceptance. 

Direct system exposure is often embedded in a range of initiatives: most often, formal system training [Lee et al., 
1995], on-the-job exposure [Compeau and Higgins, 1995], and system trials [Karahanna et al., 1999]. The IS 
literature has invested some effort in understanding the impact of exposure on successful acceptance and IS use. 
Hackbarth et al. [2003], for instance, find system exposure to be significantly correlated to perceived ease of use 
which, in turn, influences technology acceptance and adoption [Davis, 1989]. System exposure, especially end-user 
training, can increase end-user self-efficacy [Compeau and Higgins, 1995], motivation [Olfman and Bostrom, 1991], 
satisfaction [Lee et al., 1995], effectiveness [Igbaria, 1990], and overall IS success [Cheney et al., 1986; Igbaria, 
1990; Seddon et al., 1999]. However, much of this research assumes a linear and positive relationship between 
systems exposure and its effects; i.e., with greater system exposure, acceptance will increase. Furthermore, short-
term acceptance behaviors are assumed to predict continued use of technology [Venkatesh et al., 2002]. 

A small number of studies [Venkatesh and Davis, 2000; DeSanctis et al., 1993], have found varying levels of system 
acceptance in response to exposure over time. Although focused on longitudinal system use as opposed to 
acceptance during pre-launch exposure, these studies suggest a complex relationship between system exposure 
and acceptance. Indeed, in their review, Gallivan et al. [2005] suggest that acceptance of technology is not merely 
the effect of technical training and system exposure, but acceptance results from a complex interplay of 
organizational and individual factors such as technical support, management interventions, and resources. 
Consequently, while evidence on the influence of prior exposure on early adoption is strong, concluding that system 
exposure directly correlates to acceptance may be premature. In fact, the answer may lie somewhere in between. 
As we explore this theme, our role is not to refute or support the usefulness of system exposure, but rather to 
examine whether exposure beyond a certain point can harm system acceptance. 

In the next sections, we provide a brief overview of the theoretical and empirical findings underlying our study. First, 
three approaches to system exposure are addressed. In the subsequent section, we examine learning theories that 
provide early clues into the relationship between system exposure and acceptance under consideration. We next 
present evidence from an empirical investigation conducted during launch of a Web-based university registration 
and self-service portal. The article concludes with a prescriptive framework for optimizing user adoption behaviors 
from system exposure initiatives. 
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II. THEORETICAL BACKGROUND AND LITERATURE REVIEW 

System Exposure 

System exposure can significantly alter an employee’s willingness and decision to accept new information 
technologies even after relatively modest exposures to the new environment [Bhattacherjee and Premkumar, 2004]. 
Learning theorist Gagne [1972] has suggested that ―vicarious reinforcement‖ (pp. 3–4) impacts, among other factors, 
attitudes toward the learned object. As such, if new systems are to be viewed as the learned object and system 
exposure as vicarious reinforcement, changes in attitudes toward new systems are inevitable. Organizations often 
adopt a range of strategies to provide such reinforcing experiences to users. Although our research did not uncover 
a formal taxonomy of system exposure methods, we found a significant emphasis in the IS literature on formal 
systems training, possibly in recognition of the greater organizational investment involved. Other, less studied, 
approaches included on-the-job training (OJT) and system trials. In the next subsections, we review key findings, 
particularly relevant to system acceptance, within the context of these three approaches. 

Formal Systems Training 

System training is defined as formalized, structured, and institutionally sponsored training on new systems prior to, 
or in early phases of, system implementation. Formal systems training is mostly lecture-based, often in conjunction 
with hands-on application of lecture concepts. Both IS academics and practitioners underscore the criticality of 
systems training for successful implementation and productive use of technology [Cheney et al., 1986; Niederman 
and Webster, 1998; Seddon et al., 1999]. Clearly the most formalized and studied, much of the literature in this area 
has focused on end-user training methods, content, and structure of training [Gist, Schwoerer, and Rosen, 1989; 
Simon et al., 1996; Santhanam and Sein, 1994]. The research largely resides in two areas (a) establishing the value 
and contribution of end-user training to system acceptance and adoption [e.g., Lee et al., 1995; Thong et al. 1994] 
and (b) examining training methods and content in order to improve training outcomes [e.g., Agarwal et al., 2000; Yi 
and Davis, 2003]. For an extensive review of current research on end-user training, see Gupta et al. [2010]. 

Evidence of training on system acceptance has largely leaned to the positive, demonstrating greater system 
acceptance in response to formal systems training. In most cases, the effects of training have not been examined in 
isolation but rather in conjunction with factors such as the user’s organizational status, prior computer experience 
[Harrison and Rainer, 1992], and computer self-efficacy [Compeau and Higgins, 1995]. Although desirable, the 
compounding of these factors makes it challenging to isolate the direct effects of training on system acceptance. 
Consequently, determining the most optimal levels of training, i.e., how much training is beneficial for system 
acceptance [Gallivan et al. 2005] beyond which users exhibit declining acceptance, has been challenging to 
determine. This has led to the general belief is that more training is better [Lee et al., 1995] although Gallivan et al. 
[2005] and Nelson and Cheney [1987] have both found that the amount of training is unrelated to IT usage. 

On-the-Job Training 

In direct contrast to systems training, which is typically employer driven, on-the-job exposure pertains to learning a 
technology while executing normal work functions. Due to growing complexity of IS, a need to invest in formal, 
structured, and repeatable training programs, and to better manage new system perceptions, organizations have 
steadily moved away from relying completely on OJT to a blend of formal training and OJT [Ford et al., 1992]. In 
such cases, formal training precedes direct on-the-job exposure. 

In IS research, little has been done by way of examining OJT on technology acceptance and subsequent 
organizational adoption. At most, some studies have examined longitudinal manifestation of system acceptance 
[Venkatesh and Davis, 2000; DeSanctis et al.,1993], OJT has not been their study environment. Beyond IS most of 
the research conducted is at a firm, national, or economic level. McWilliams and Zilbermanfr [1996] suggest that 
learning by using results in earlier adoption since firms are able to leverage economies of scale. Cohen and 
Levinthal [2000] confirm this as they find that learning by doing makes firms more practical and efficient at what they 
might already be doing. In contrast, learning by doing may result in a less diverse work environment [Cohen and 
Levinthal, 2000] as a narrow scope of learning may perpetuate within the organization, thereby reducing a firm’s 
innovativeness. Due to the prolonged and progressively developmental nature of OJT, determination of when 
employees transition to inherent system acceptance is difficult to measure without longitudinal observation. 
Furthermore, without such longitudinal studies, insights into the transition from OJT to normal daily operations are 
challenging to obtain. It is not surprising then, that we found no studies that examined the relationship between 
length of OJT and system acceptance. 

System Trials 

Often provided in the form of self-directed exposure, online trials, or e-learning, system trial lies between the 
continuum of formal training and OJT. Herein, users are encouraged to use a near formalized version of the system 
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for limited time periods with the intent of testing usability and/or encouraging system familiarization prior to full 
launch. IS research has mostly focused on a surrogate measure for system trials, trialability. This construct is 
defined as the opportunity to engage the new technology in a reduced-risk if not a risk-free basis [Moore and 
Benbasat, 1991]. Consequently, while system trials measure actual behaviors, trialability is often implemented to 
measure individual perceptions. 

As compared to live post-launch experience, system trials facilitate an environment that allows users to make errors 
without the usual ramifications that accompany actual system use. When contrasted with formal systems training, 
system trials enable minimally expensive exploration of system features [Kendall et al., 2001] to greater depth and 
breadth than may be possible with the structure of formal training. Further, since system trials are self-directed, 
users can pace and customize their exposure. For these reasons, system trials potentially reduce computer anxiety 
and increase self-efficacy even after short duration exposure [Featherman and Pavlou, 2003]. System-specific 
computer efficacy is found to be a strong predictor of system acceptance [Hasan, 2005]. 

In the IS literature, system trialability has been found to positively influence systems acceptance and adoption 
behaviors [Tan and Teo, 2000; Agarwal and Prasad, 1998; Moore and Benbasat, 1991] and, in particular, pre-
adoption attitudes [Karahanna et al., 1999]. Recent research has focused on system characteristics in conjunction 
with system trialability [Pituch and Lee, 2006]. For instance, Templeton and Byrd [2003] conclude that acceptance of 
a new technology is a function of whether or not users perceive that the trial version is easy to use, and, if so, are 
willing to experiment with the technology. Once again current emphasis in IS literature has been on establishing the 
relationship between system trials and acceptance while emphasis on determination of most favorable duration of 
such trials is, yet again, missing. In this article, we explore this last method of system exposure, specifically 
deleterious effects of prolonged system trials on acceptance. Our findings pertaining to system trials are expected to 
serve as proof-of-concept for future studies interested in exploring similar effects of formal end-user training or OJT 
on acceptance. 

Learning and System Exposure: Why Should Acceptance Decline? 

Irrespective of the nature of system exposure, its usefulness for technology acceptance is well established in IT 
literature. The question then arises regarding the amount of exposure necessary for effective technology 
acceptance. More significantly, is there some extent of exposure beyond which system acceptance plateaus or even 
declines? Numerous IS studies on end-user training have relied on learning theories to comprehend effectiveness of 
systems training and exposure. Choi et al. [2007] and Davis and Davis [1990],for instance, measured learning 
performance to assess effectiveness of end-user training while Santhanam et al. [2008] relied on learning concepts 
to explain behaviors observed in e-learning environments. Frequently, studies have utilized individual learning 
characteristics such as attitude toward learning [Choi et al., 2007; Olfman and Bostrom, 1991], self-efficacy [Piccoli 
et al., 2001], and information processing abilities [Davis and Davis, 1990] to better comprehend cognitive and 
behavioral processes that might explain training outcomes. To a large extent, then, IS literature has viewed system 
exposure—whether formal training or self-directed learning—as inherently a learning engagement. Taking cues from 
this, we looked to existing learning theories for prescription in our domain of interest. 

Defining learning, whether at the individual or the organizational level, has been challenging [Fiol and Lyles, 1985; 
Kolb, 1984] because of the myriad and often divergent perspectives. Most often, learning has been viewed from a 
behavioral versus cognitive perspective. Behavioral learning theories have largely focused on post-learning 
outcomes such as action after interpretation of learning [e.g., Daft and Weick, 1984] whereas cognitive learning 
theories tend to examine longer-term changes in behaviors such as habit forming [e.g., Hedberg, 1981] and belief 
sharing [Jelinek, 1979]. Carlson [1980] suggests a variant classification of learning theories—associationistic, 
functionalistic, and cognitive. While associationistic and functionalistic theories focus on individual behavioral 
outcomes from learning, cognitive theories emphasize internal processes of individual learning, specifically 
perception, thinking, planning, and decision making [Davis and Davis, 1990]. Another set of perspectives view 
learning through the lens of product, function, and process [e.g. Knowles, 1973, 1980]. Learning as a product 
emphasizes the end result or outcome of the learning process [Harris and Schwann, 1961], as in the case of 
outcomes of an examination. In contrast, learning as a function focuses on issues such as motivation, retention, and 
transfer that make learning possible [Harris and Schwann, 1961]. Finally, process-focused theories examine the 
learning experience to identify cognitive and physiological changes that happen to a learner as she moves toward a 
specific learning outcome. Process-focused theories tend to view learning as a means to shaping, changing, or 
controlling human behavior. 

For this study, we view system exposure as a learning process and focus on two theories—Knowles’ [1980] 
andragogical theory and the Yerkes-Dodson Law [Yerkes and Dodson, 1908]—for providing initial insights into 
system acceptance behaviors. Knowles’ [1980] andragogical theory posits individual learning as influenced by four 
behaviors that result from maturation, i.e., a need to (a) be self-directing, (b) utilize experience in learning, (c) 
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identify readiness to learn, and (d) organize learning around life problems. Changes in learning, then, occur primarily 
as a result of changes in internal needs or motivations of the individuals [Knowles, 1973]. During maturation, 
learners attach greater significance to experience over spoken word, learn what they feel the need to learn in order 
to simplify their personal or professional environment, and expect instant gratification, i.e., immediate application to 
work [Pont, 2003]. In effect, individuals learn significantly only those things which they perceive as being involved in 
the maintenance of, or enhancement of, the structure of the self [Rogers, 1951]. They tend to be less subject-matter 
oriented [Song et al., 2004] and more experiential. This problem-centered orientation minimizes learning that 
demonstrates postponed application [Knowles, 1973]. A small number of studies in the IS domain have arrived at 
similar conclusions, suggesting that technology, when it fits the task it supports and is relevant to the user, has a 
positive impact on individual performance [Goodhue and Thompson, 1995] and motivation [Olfman and Bostrom, 
1991]. 

Based on andragogical theory, then, system exposure may begin yielding diminishing benefits when it is (a) didactic 
that is, it not self-directed but imposed on the user; (b) hypothetic, which is not experiential such as when it is 
executed as a tutorial; (c) feature-irrelevant, i.e., when it does not meet functional needs of the user; and/or (d) 
temporally irrelevant, i.e., when features learned are not perceived as immediately applicable. In addition, we 
suggest that (e) exposure to complexity, i.e., to systems with functional width and depth, may demonstrate a decline 
in perceived benefits as users’ exposure increases. Complex tasks increase cognitive overload [Merrienboer et al., 
2003] and place greater information processing requirements on the user. When task complexity does not match 
needs and abilities of the learner, motivation and learning may decline [Katz and Assor, 2007]. 

Stimulus and response theories may potentially provide other insight into effects of system exposure on acceptance. 
Possibly the most well-recognized works in this area is the Yerkes-Dodson Law [Yerkes and Dodson, 1908] which 
suggested an inverted-U relationship between stimulus and performance. The law suggests that insufficient stimulus 
has an inert effect on the learner, while too much of it has a hyperactive affect. Consequently, an individual will not 
respond adequately to too little or too much stimulus. Furthermore, optimal performance peaks somewhere in 
between these levels of stimulation beyond which it begins declining (see Figure 1). Subsequent research has 
confirmed the correlation suggested by Yerkes and Dodson [Anderson, 1994; Berlyne, 1960; Broadhurst, 1959; 
Dickman, 2002; Telegdy and Cohen, 1971] and numerous psychological and physiological factors have been 
developed to explain the phenomenon. Drawing parallels from the psychological literature, one might consider that 
system exposure (the stimuli) might receive a similar inverted-U response (technology acceptance) from users. 

In IS and related disciplines, inverted-U relationships have been found in numerous contexts such as between 
strategic IS planning and its success [Newkirk et al., 2003], amount of information presented and decision making 
performance [Chewning and Harrell, 1990], and use of conceptual modeling techniques and modeler experience 
[Davies et al., 2005]. Kamis et al. [2008] find task complexity to have an inverted-U relationship with enjoyment 
which, in turn, has been found to impact system acceptance [Agarwal and Karahanna, 2000]. 

III. PRELIMINARY EVIDENCE FROM AN EMPIRICAL EVALUATION 

An exploratory study examining the impact of system trials on student acceptance of StudentPortal, a Web-based 
student registration system and portal, was conducted in Fall 2006. The StudentPortal system integrated student 
financials, study progression, residential life, news portals, updates section, and most significantly, an online 
registration feature. Prior to implementation of StudentPortal, students registered via a phone-based system, 
Touchtone Voice Response (TVR). However, as per university mandate, TVR was to be discontinued due to 
inherent inefficiencies and capacity issues. The system was also seen as a shift toward more competitive and 
efficient IT infrastructure as the university transitioned to an integrated PeopleSoft environment. Future registrations 
were required to be online via StudentPortal by Fall 2006. 

Upon launch, IT Services (ITS) made the StudentPortal portal available to students with the intent of determining its 
usability and acceptance. It was also an initiative to increase awareness of the upcoming portal, leverage benefits of 
social networking among students, and consequently mitigate perceived risks of the new technology. Students who 
engaged in a self-directed trial of the system and completed a survey were entered into a drawing for three $100 gift 
certificates. For purposes of this study then, system trials served as our approach to system exposure as opposed to 
formal training or on-the-job learning. 

Survey Design 

Studies on individual adoption of IS have investigated a range of contributory factors—from organizational culture to 
individual exposure, motivation, demographics, and personal factors. These factors have, most often been examined 
within the context of the Technology Acceptance Model (TAM) [Davis, 1989], which suggests that an individual’s 
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Figure 1. Representation of Yerkes-Dodson Law 

 

Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of a system determines her behavioral intentions to 
use the system [Davis, 1989]. Consequently, individuals with positive perceptions of a new technology are more 
likely to accept and use it as compared to those with negative perceptions. TAM constructs have been used to 
measure system acceptance in numerous domains including online shopping services [Chau et al., 2000], e-
government initiatives [Carter and Belanger, 2005], mobile services [Wang et al., 2006], and healthcare IS [Yu et al., 
2009; Wilson and Lankton, 2004]. Considering the extensive verification and validation of the model (see Lee et al., 
2003 for a review), its continued pervasiveness in the IS literature, and fit with the objectives of our article, we used 
the PEOU and PU constructs of TAM as measures for system acceptance in this study. Note that it is not our intent 
in this article to further validate or extend TAM constructs in this study. Rather, our purpose in using TAM is to 
leverage an existing theory and related constructs for achieving the primary objective of this article, i.e., examination 
of the relationship between duration of system exposure and technology acceptance. 

Two separate surveys served as vehicles for our data collection. The first survey was open-ended, asking students 
for their evaluation of the new system, features they liked or disliked, and experience with system trial. Thirty-five 
students enrolled in the first author’s classes completed the survey. The second survey, designed after the TAM, 
was posted on the most frequented portal, Student Commons, served as our primary data collection instrument. The 
Web survey consisted of a thirty one-item instrument measuring on a five-point scale anchored by ―strongly 
disagree‖ and ―strongly agree.‖ Within this survey, student responses to questions pertaining to PU and PEOU were 
considered proxy measures for system acceptance. 

All original items from TAM were retained for the study, and six additional questions related to demographics, 
outcome assessments, and student attitudes toward StudentPortal versus the predecessor TVR were included. Of 
relevance to this study was the question titled Trial Time: Prior to this use of StudentPortal, for how long did you 
explore the trial version? This question required students to indicate the time spent exploring the trial version. 
Students were given the following ranges: No time at all; 1–15 minutes; 15–30 minutes; 30–45 minutes; more than 
45 minutes. Since surveys could not be completed unless some time had been invested in trying the system, we 
retained this first range to control for potential participants who may have responded to the survey without exploring 
system features. Two factors supported our decision in using the time intervals we did. First, IT Services did not 
classify students as ―heavy users‖ since the features relevant to them were largely informational and search-oriented 
with some limited updating functions, e.g., personal information updates and registration. Second, even though a 
range of features were available to students, considering conflicting time commitments and the fifteen-to-twenty-
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minute average attention span for typical college students [Hoover, 2006; Middendorf and Kalish, 1996], we did not 
expect subjects to spend an inordinate amount of time on this trial in a single sitting. Our open-ended surveys, 
though a posteriori, supported this conjecture. 

Table 1: Survey Respondent Demographics 

Survey Reponses by Status and Gender Total Enrolment Survey 
Respondents 

Response Rate 
(%) 

Freshmen—Women 1129 88 7.79 
Freshmen—Men 911 192 21.08 
Sophomore—Women 1160 60 5.17 
Sophomore—Men 968 100 8.62 
Junior—Women 927 98 10.57 
Junior—Men 700 224 32.00 
Senior—Women 998 120 12.02 
Senior—Men 832 269 32.33 
Graduate/Professional—Women 1761 110 6.25 
Graduate/Professional—Men 1819 260 14.29 
Summary 11205 1521 13.57 

The survey went online in April 2006, immediately following the end of the fall registration period in order to capture 
students’ recent experiences with StudentPortal. A timeline of the StudentPortal study is presented in Figure 2. 

 

Figure 2. Timeline for StudentPortal Study 

From over 11,000 enrolled students, 1,521 completed the survey yielding a response rate of 13.6 percent. Table 1 
provides a breakdown of total enrollments versus respondents by gender and status (class year) for the sample. In 
general, respondents found StudentPortal to be both useful and easy to use (90+ percent). Open-ended surveys 
suggested that students liked the ability to ―quickly check [StudentPortal] to remind [them] of [their] schedule for next 
year,‖ appreciated its user-friendliness, the ―quick registration process,‖ and ―plenty of information on classes.‖ 

Does More Trial Time Mean Greater System Acceptance? 

Survey respondents were segmented by the time spent on StudentPortal trials. Since all students were expected to 
have spent some time with the system before responding to the survey, we had no respondents who had no trial 
time with the system. This created essentially four segments. 

Group 1: 1–15 minutes of system trial 
Group 2: 15–30 minutes of system trial 
Group 3: 30–45 minutes of system trial 
Group 4: greater than 45 minutes of system trial 

Mean PEOU and PUs of each segment were generated and tests of significance were conducted. Results are 
detailed in Tables 2 and 3 and mean PEOU and PUs are mapped out in Figure 3. Table 3 details mean differences 
between the four groups and comparative tests of significance. Differences are significant between all groups except 
between group 1 (1–15 minutes trial time) and group 2 (15–30 minutes) and between group 3 (30–45 minutes) and 
group 4 (> 45 minutes). We relied on Tukey’s multiple comparison tests for purposes of this study. This test is most 
suited for studies that require comparison of multiple groups and when these comparisons are ad hoc rather than 
planned [Westfall et al., 1999]. Tukey’s test compares each pair of means with appropriate adjustment for multiple 
testing. Without this adjustment, results may be a mere statistical artifact. Preliminary results are interesting. Mean 
PU and PEOUs indicate declining gains in acceptance-related perceptions as the trial period increases. In other 
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words, as subjects spent more time on the system trial, beyond a threshold their perception of ease of use and 
usefulness declined. The declines are significant and consistent as the trial time increase. Clearly, for this system, 
more than thirty minutes of trial time did not seem to benefit technology acceptance and, in fact, harmed PU and 
PEOU. 

Table 2: Impact of Trial Time on Perceived Ease of Use and Perceived Usefulness 

Group # Trial Time, min. Sample Size Mean PU Mean PEOU 
1 1–15 571 3.77 3.50 
2 15–30 695 3.75 3.46 
3 30–45 194 3.39 3.32 
4 > 45 61 3.23 3.21 

 

 

Figure 3. Impact of Trial Time on Perceived Ease of Use and Perceived Usefulness 

 

Table 3: Group-Wise Comparisons Across Trial Time 

Trial Time 
Group 
Comparisons 

Perceived Usefulness Perceived Ease of Use 
Mean 
Difference 

p-values 
Mean 
Difference 

p-values* 

1–2 0.02154 0.9792 0.04391 0.5356 
1–3 0.38406 <.0001* 0.18315 0.0011* 
1–4 0.53770 0.0008* 0.28934 0.0036* 
2–3 0.36252 <.0001* 0.13924 0.0195* 
2–4 0.51616 0.0014* 0.24543 0.0185* 
3–4 0.15364 0.7468 0.10619 0.6523 

*p-values significant at 0.05 
 

Effects of Gender and Prior Technology Experience 

Numerous studies on system acceptance have examined effects of self-reported demographic variables such as 
age, gender, and prior computer experience [Arning and Ziefle, 2007; Gefen and Straub, 1997; Hackbarth et al., 
2003; Venkatesh and Morris, 2000;]. In order to determine the consistency and generalizability of our findings across 
different dimensions, we further diced our data by gender and prior technology experience. For this study, age was 
not relevant due to the relatively uniform age of the participant population. 

IS research has yielded mixed findings regarding gender differences and system acceptance. Venkatesh and Morris 
[2000] suggest that in taking a decision to adopt technology, women are mostly influenced by usefulness of that 
technology. In agreement, Gefen and Straub [1997] suggest that women demonstrate greater PU in contrast to men 
who demonstrate greater PEOU. However, Minton and Schneider [1971] find that men are more task-oriented than 
women, suggesting that their use of technology may be greatly influenced by usefulness as well. Finally, Arning and 
Ziefle [2007] and Doll et al. [1998] find minimal or no gender effects on PU and PEOU. Early findings from 
examination of gender in our study are presented in Table 4 and Figure 4. Results suggest that with extended 
exposure, women showed a greater decline in both PU and PEOU as compared to men. However, more 
interestingly our data suggests that up to thirty minutes, women demonstrate similar levels of PU and PEOU as men. 
Tests of significance, presented in Table 4, confirm that up to thirty minutes, there is no significant difference 
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between women and men regarding PU and PEOU. Beyond that, the acceptance measures taper off significantly, 
particularly so for PEOU. 

Table 4: Group-Wise Comparison Across Gender 

Trial Time 
Group 

Perceived Usefulness Perceived Ease of Use 
Mean Difference p-values Mean Difference p-values 

1 0.07139 0.9932 0.02736 0.9997 
2 -0.06786 0.9913 -0.04004 0.9921 
3 -0.01538 0.9783 -0.1439 0.7983 
4 0.8545 0.0209* 0.5401 0.0113* 
*p values significant at 0.05 
  

 

                  (a) Perceived Ease of Use             (b) Perceived Usefulness 
 

Figure 4. Gender Differences on Impact of Trial Time on PEOU and PU 

 

Existing empirical evidence points to the fact that people with have prior exposure to technology will be more 
positively disposed toward acceptance of a similar technology. Downing, Moore, and Brown [2005], Agarwal and 
Prasad [1997], and Arning and Ziefle [2007] have found that individuals with prior technology experience 
demonstrate better performance with technology than novice users, particularly for PEOU. Most studies in this 
domain suggest that computer experience impacts self-efficacy which, in turn, influences PU and PEOU [Arning and 
Ziefle, 2007; Venkatesh and Davis, 2000; Igbaria and Ivari,1995]. For instance, McKechnie et al. [2006] and 
Montoya-Weiss, et al. [2003] find that individuals who have extensive experience with internet are more positively 
disposed to online shopping opportunities. However, despite these studies, our comprehension of the impact of prior 
experience on PEOU and PU beyond a threshold of exposure is limited. 

To test effects of prior technology experience, we examined its role on system acceptance under the four trial times. 
Preliminary analysis of our data is presented in Table 5 and Figure 5. Herein, we present PU and PEOU of groups 
that indicated very low, high, and very high experience with technology. Two groups, low and moderate, were 
excluded due to insufficient sample representation. We anticipated that while experienced technology users might 
better appreciate features of the system than less experienced users, they could also demonstrate greater 
propensity to get fatigued by familiar features which may then appear irrelevant. Consequently, we expected 
experienced users to exhibit a rapid decline in PU and PEOU. Contrary to expectations, although all participants 
showed a decline in PU and PEOU beyond a threshold, PEOU and PU both decline more steeply for individuals with 
lower technical experience than those that indicated high or very high technical competency. These differences are 
particularly pronounced as trial time extends 30 minutes. At this point, PEOU and PU differences between subjects 
with low experience and those with high and very high experience are significant. Not surprisingly, we observe no 
significant difference between participants with high and very high prior exposure to technology. 

IV. EXPLAINING DIMINISHING ACCEPTANCE: IMPLICATIONS FOR RESEARCH AND 
PRACTICE 

Although preliminary, our findings provide early evidence for diminishing relationship between system exposure and 
acceptance. Reverting to the learning theories discussed earlier, two of the preconditions suggested in Knowles’ 
[1973] andragogical theory—the didactic and the hypothetic learning environment—were not present in our 
experimental setting since students use of the system was voluntary and experiential in contrast to being imposed 
and tutorial-based. Consequently, while these factors could not explain declining acceptance from prolonged system  
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Table 5: Group-Wise Comparisons Across Prior Experience and Trial Time 

Experience x Trial Time Perceived Usefulness Perceived Ease of Use 
Trial Time 

Comparative Experience 
Mean 
Difference 

p-values 
Mean 
Difference 

p-values 

1 
Low Exp. vs High Exp. 0.0738 1 -0.05058 1 
Low Exp. vs V. High Exp. 0.3681 1 -0.05607 1 
High vs. V. High Exp. 0.1208 1 -0.00549 1 

2 
Low Exp. vs High Exp. -0.086 1 -0.0476 1 
Low Exp. vs V. High Exp. -0.06876 1 -0.03095 1 
High vs. V. High Exp. 0.01724 0.8419 0.01665 1 

3 
Low Exp. vs High Exp. -0.09968 1 0.08653 1 
Low Exp. vs V. High Exp. 0.2519 1 0.1751 0.9998 
High vs. V. High Exp. 0.3516 0.7731 0.08856 1 

4 
Low Exp. vs High Exp. -1.7441 0.0029* -0.9662 0.0115* 
Low Exp. vs V. High Exp. -1.1735 0.07* -0.8065 0.0135* 
High vs. V. High Exp. 0.5705 0.9614 0.1597 1 

*p values significant at 0.05 
  

 

 

 

 

 

 

 

(a) Perceived Usefulness    (b) Perceived Ease of Use 

 Figure 5. Technological Experiences and Impact of Trial Time on PEOU and PU 

 

exposure, other factors may provide explanations. First, as with most enterprise-wide systems, StudentPortal is a 
deep and wide portal that makes a range of features available for exploration. Although study participants were 
exposed to a wide range of functions as opposed to system depth, more trial time possibly allowed students to 
explore greater complexity of the portal. They may have had large volumes of information and features available 
through the trial but possibly struggled with recollection, thereby reducing perceptions of ease of use. The 
complexity of this system as compared to user needs, then, potentially undermined perceptions of usefulness 
through prolonged usage. Student responses to the open-ended surveys provided some indications of this: 

Too Complex: I don’t like how there are so many links. Have to go back and forth to see classes, which ones are 
available to what is offered. 

It was hard to navigate. I liked the old system where they had it by school (ex. ACCO, BULA, MANA) and you 
selected one and it told you the options (BULA 127, MANA 128, etc.). 

Second, options available on the main page of the portal were targeted to address direct and most frequently used 
student features. Individuals who explored the system for shorter periods of time potentially focused on these 
relevant system elements thereby raising perceptions of usefulness. In contrast, for individuals who experienced the 
system beyond optimal points, feature-irrelevance could potentially have resulted in a decline in PU and PEOU. 
Deeper level features that may not necessarily have supported participants’ functional requirements from this 
system. Responses to the open-ended survey hinted at this: 

The [StudentPortal] screen has WAY too much information on it. Overwhelming. Don’t need all this information. Just 
need the stuff relevant to class registration. 
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Too much information that I don’t need. I liked how TVR had only a few options, i.e. grades, classes, 
financials, and student directory—I really don’t need and won’t use all that is offered, but I am not sure if I can 
change my settings so I only get what I want. 

Third, deeper exploration of the system possibly also revealed features that might not be immediately applicable to 
students. For instance, advisee and grading functions were not necessary for another five to six months. Financial 
standing for Fall 2007 registration was further down the timeline. Exposure to temporally irrelevant functions may 
have reduced perceptions of usefulness. Responses to the open-ended surveys also highlighted the desire to 
temporarily loverlook features that might have a time-delayed application for the participants. As two students 
suggested: 

[StudentPortal] has many different items to look at (Bursar, finals times, etc.). Ignored them for now since I know I 
don’t need them now. Registration was important so used it. My comments below relate only to the registration 
system. 

I did not want to do advanced searches for classes because I did not think I need them. I found what I needed with 
the basic search. 

In light of this discussion, the following propositions can be suggested:  

Proposition 1(a): As system exposure extends beyond a comfortable period, users’ will perceive declining system 
ease of use. 

Proposition 1(b): As system exposure extends beyond a comfortable period, users’ will perceive declining 
system usefulness. 

For researchers interested in exploring these propositions, we suggest examining them under the five conditions 
suggested earlier—(a) didactic versus self-directed exposure; (b) hypothetic versus experiential exposure; (c) 
temporally-irrelevant versus temporally-relevant exposure; (d) feature-irrelevancy versus feature-relevant exposure; 
and (e) complex versus simple systems. We believe that interesting findings will emerge from their intersection. 

Women in our study demonstrated a propensity to experience declining PU and PEOU earlier than men. Findings 
suggest that up to a certain point, women demonstrate similar levels of PU and PEOU as men. Based on our 
findings and the evidence from existing literature, we propose the following for further examination. 

Proposition 2(a): With extended system exposure, women will demonstrate greater decline in perceptions of 
perceived usefulness as compared to men. 

Proposition 2(b): With extended system exposure, women will demonstrate greater decline in perceptions of 
perceived ease of use as compared to men. 

Most often, lower computer self-efficacy in women has been used to explain gender-related differences in PEOU 
and PU when they are uncovered [e.g., see Venkatesh and Davis, 2000; Venkatesh and Morris, 2000; Busch, 1995]. 
However, in light of our results that suggest no significant difference in PU and PEOU levels between women and 
men up to thirty minutes, one might speculate that factors other than self-efficacy may be at play. Furthermore, 
women participants may experience greater feature or temporal-irrelevancy, explaining the steeper and more 
significant decline in PU and PEOU perceptions beyond the optimal point as compared to men. The value in 
examining propositions 2(a) and 2(b) may, then, come from studying gender differences outside the lens of self-
efficacy. 

With reference to subjects with low versus high prior technology experience, we find that participants indicating low 
experience demonstrated a more rapid and significant decline in PU and PEOU as opposed to those with high to 
very high prior experience. Subjects with high and very high experience demonstrate more stable outcomes on both 
these measures. Based on this, we suggest: 

Proposition 3(a): With extended system exposure, individuals with low prior technology experience will demonstrate 
greater decline in perceptions of perceived usefulness as compared to those with high experience. 

Proposition 3(b): With extended system exposure, individuals with low prior technology experience will demonstrate 
greater decline in perceptions of perceived ease of use as compared to those with high experience. 
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Self-efficacy has, yet again, been used extensively to explain differences in system acceptance behaviors between 
experienced and novice users [Hasan, 2006; Hackbarth et al., 2003; Venkatesh and Davis, 1996; Igbaria, 1995]. Our 
preliminary findings indicate interesting outcomes that might warrant exploration of factors other than self-efficacy. 
We suggest that as users with low experience spend more time with systems, they may find the deeper-level 
functions more complex and irrelevant to their purpose in contrast to more experienced users. Consequently, 
boredom and ennui may set in earlier for the less experienced group. Experienced users, on the other hand, may 
find their familiarity allows them to be more ―playful‖ [Hackbarth et al., 2003] with the system and, in the process of 
play, uncover more features that engage them to a greater extent with the trial. Furthermore, as a result of prior 
exposure, experienced users may demonstrate a greater propensity to become cognitively absorbed [Agarwal and 
Karahanna, 2000] by offerings of the system, thereby providing enhanced perceptions of system usefulness. These 
users may be more immune to feature-irrelevancy and benefit from enjoyment derived from computer use [Yi and 
Hwang, 2003]. Considering that cognitive absorption, captured in the five dimensions of temporal dissociation, 
focused immersion, heightened enjoyment, control, and curiosity, is found to be a strong antecedent of PU and 
PEOU [Agarwal and Karahanna, 2000], PU for experienced users may peak later than those for less experienced 
users. Further research on these interactions may, then, benefit from an examination of other influential factors such 
as feature and temporal irrelevancy, computer playfulness, and cognitive absorption to understand the psychological 
explanations underlying these findings. 

V. IMPLICATIONS FOR RESEARCH AND PRACTICE 

From a research perspective, this article focuses on establishing the relationship between duration of system 
exposure and related effects on acceptance. More critically, however, it proposes the idea that initial system 
exposure beyond a reasonable limit can be detrimental. Several recommendations for practice emerge from our 
findings. In particular we focus on two issues (1) method of system exposure, and (2) duration of exposure. 

Method of System Exposure: Fit with User Needs 

Not all types of new system initiatives can benefit from self-directed system trials. Some systems, and more 
importantly, different users on the same system, will need different levels and forms of exposure. Tailoring system 
training to individual differences among users is not new and has been proposed numerous times in existing IS 
literature [e.g. Mirani and King, 1994; Bostrom et al., 1990]. In Table 6, we propose a framework for determining 
optimal system training methods based on user needs for system exposure. The framework suggests assessing 
needs of the user population based on two dimensions: functional depth (how deeply do users need to know specific 
functions of a system) and functional width (how many functions of the system users need to know). For users who 
require competency in a specific function and also need exposure to a variety of system features (cell #1), in-depth 
formal training should remain the primary mode whereas OJT should be relied on the least. Self-directed learning, 
as in OJT, may run the risk of reinforcing system rejection behaviors if the systems functions are complex and deep. 
In contrast, general users whose system experience needs are narrow and shallow (cell #4) can benefit from self-
paced learning either on-the-job or through trials. For such users OJT exposure and system trials are adequate for 
system familiarization. 

How Much Exposure is Ideal? 

Although we have established preliminary evidence for a diminishing relationship between amount of system 
exposure and acceptance in the context of a web-based system, more research clearly needs to be done to provide 
further evidence. Considering a university setting with graduate and undergraduate student subjects, most of our 
findings suggest that about thirty to forty-five minutes of exposure is ample for our domain of interest. However, 
other domains and systems may demonstrate different effects. Empirical evidence from the Yerkes-Dodson law 
discussed earlier suggests that complex tasks demonstrate later inverted-U curve behaviors as compared to 
simpler, less complex tasks [Yerkes and Dodson, 1908]. For complex tasks, then, inversion in PU and PEOU sets in 
later than for simpler, less cognitively demanding tasks, thereby suggesting that myriad environments will 
demonstrate different points of diminishing benefits. 

In Table 7 we make some early propositions based on this argument. Herein, we examine the intersection of system 
complexity which is defined as interplay of functional depth and functional width of system features proposed in 
Table 6. System environments that demonstrate high depth and high width would be qualified as being highly 
complex. In contrast, those with lower functional width and low depth in each feature would be classified as having 
low complexity. Consequently, while this framework ignores individual learning abilities and motivations, it does 
factor in broad user needs and system characteristics. 

Figure 6 illustrates these differential inversion behaviors as defined by system complexity and user needs above. 
The figure indicates that for complex systems, often accompanied with high user needs, system acceptance will get 
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impacted only after extended periods of training. Until then, users will continue to get exposed to new features and 
will benefit from direct as well as indirect exposure. In contrast, users of simple systems should not be overburdened 
with formal exposure since, beyond a certain threshold, unwanted system features will tend to overwhelm them 
sufficiently to generate early acceptance inversion. 

Based on Table 7 and Figure 6, we make the following proposition for further research: 

Proposition 4: System complexity and user learning needs will determine the point at which PU and PEOU will begin 
declining with prolonged system use. 

VI. CONCLUSIONS 

This article presented early ideas on the relationship between system exposure and system acceptance. The results 
are only preliminary and require further commitment from researchers and practitioners. In Table 8, we summarize 
potential opportunities for further research in this area based on discussions in the two previous sections. Additional 
research opportunities emerge from the limitations of this study environment which only theoretically addresses the 
complex interplay of organizational and individual level factors that shape technology acceptance. Further, there is a 
possibility that fine-tuning the trial time intervals in future studies may demonstrate more compelling patterns in 
system acceptance than uncovered in this study. For instance, breaking the time segments down to ten-minute 
intervals may result in a better visual and statistical demonstration of diminishing benefits such as a clearer inverted-
U. On the other hand, with high-end users and more complex systems, longer temporal categorization may be more 
meaningful. 

 

 

Table 6: Form of System Exposure 

 Functional Depth 

Functional 
Width 

Low High 

High 

3 
User Type: General Users 
Exposure Needs: Low 
Examples: Administrators, Public Relations 
 
Primary Training Method: Short system 
training focusing on system navigation. 
Depend upon on-the-job exposure and 
system trials for in-depth learning, 
particularly for mandatory systems. 
Learning Modes to Minimize: Formal 
systems training. 

1 
 
User Type: Heavy Users 
Exposure Needs: High 
Examples: CRM, Supply Chain, IT Services 
 
Primary Training Method: Systems training 
should provide wide and deep knowledge of 
system features.  
Subsequently, focused systems training should 
provide functional depth in multiple areas. 
 
Learning Modes to Minimize: On-the-job 
exposure 

Low 

4 
 User Type: External Users 
Exposure Needs: Low 
Examples: Customers, Suppliers,  
 
Primary Training Method: On-the-job 
exposure and system trials for in-depth 
learning, particularly for mandatory 
systems. Provide manuals and instructions 
.Learning Modes to Minimize: Formal 
systems training. 
 

2 
User Type: Functional Users 
Exposure Needs: High 
Examples: Finance, Accounting, HR  
 
Primary Training Method: System trials for 
overview of system features. 
In-depth training on focused functions. To 
make training efficient, it should occur after 
self-direct trials. 

 
Learning Modes to Minimize: On-the-job 
exposure to functional elements. 
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Table 7: Duration of System Exposure 

 User Needs 
System 
Complexity 

Low High 

High 

Self-directed System Trials—Short duration 
with real-time support, e.g., online chat 
function, helpdesk call-in 

 
followed by 
 

On-the-Job Learning: extended duration 
supported by general IT services. 

Formal System Training—extended duration 
 
followed by 
 

On-the-Job Training: 1 month with extensive 
support. Gradual support withdrawal. 

Low 

System Trial—short duration with real-time 
support e.g. online chat function, helpdesk 
call-in. 

 
 followed by 

 
On-the-Job Learning: User directed.  

 

Formal System Training—medium duration 
 
followed by 
 

On-the-Job Training: extended duration with 
extensive support. Gradual support withdrawal. 

 

 

Figure 6. System Complexity, User Needs, and Training Volume 

 

Significant efforts have already been directed towards understanding the relationship between system training, its 
acceptance, and eventual use. Factors examined have encompassed a range of levels—organizational, system, and 
individual. Yet, to the best of our knowledge, ours is the first study to examine detrimental effects of extended 
system exposure on acceptance. While our study provides preliminary evidence, it also reveals a potentially 
interesting extension and application of TAM. Current research on system exposure and acceptance using TAM 
constructs have applied the model primarily in two settings: (a) assessing acceptance at the end of exposure and (b) 
examining acceptance perceptions over time through longitudinal study. However, further research must be done to 
examine how and why system acceptance varies within a single instance of exposure e.g. a training session or trial 
time. This lends naturally to integration with learning and cognitive theories and is where new contributions to the  
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Table 8: Summary of Emergent Research Questions 

# Research Questions 
1 Do users perceive declining acceptance with prolonged system exposure? 

a. What is the impact of complexity, feature-irrelevancy, and temporal-irrelevancy on acceptance 
during system exposure? 

b. Which of the above factors can be effectively managed so as to delay the turning point for 
diminishing acceptance behaviors? 

2 Do women demonstrate different behaviors in declining benefits from exposure as compared to men? 
a. In what ways are these behaviors different from men? Do women demonstrate a steeper 

decline beyond the turning point? Do they demonstrate earlier turning points as compared to 
men? 

b. Do factors other than self-efficacy explain the acceptance behaviors among women? 
c. Do factors such as complexity, feature-irrelevancy, and temporal-irrelevancy impact women 

differently than men? If yes, how? 

3 Do individuals with greater prior experience to technology demonstrate different system acceptance 
behaviors from those with lower prior experience? 

a. In what ways are these behaviors different among the two groups? Do individuals with high prior 
experience demonstrate a slower decline beyond the turning point? Do they demonstrate a later 
turning point as compared to those with lower experience? 

b. Do factors such as computer playfulness, enjoyment, and cognitive absorption explain the 
differential acceptance behaviors among these two groups? 

c. Do factors such as complexity, feature-irrelevancy, and temporal-irrelevancy impact the two 
groups differently? If yes, how? 

4 How do optimal exposure levels to complex systems, defined as those with high functional depth and 
high functional width, differ from those to systems with low complexity? 

a. Do complex systems demonstrate earlier and steeper declines in acceptance for users with low 
needs as compared to simpler systems? 

b. Do gender effects show up differently across simple and complex systems exposures? If yes, 
how? 

c. Do prior experience effects show up differently across simple and complex systems exposures? 
If yes, how? 

d. Do factors such as complexity, feature-irrelevancy, and temporal-irrelevancy impact the two 
groups differently? If yes, how? 

vast literature of TAM may surface. Contributions will also emerge from the relatively unexplored areas of system 
acceptance during OJT. Although this area is challenging to study, effective use of protocol analysis techniques, 
observations, and ethnographic studies may provide some useful and rich insight into system acceptance over 
prolonged exposure. Finally, researchers may find that TAM measures of PU and PEOU are too restrictive for 
measuring the effects of trialability. We encourage future work in this domain to examine other acceptance 
constructs in addition to or instead of TAM. 

Finally, early evidence on diminishing returns of training investment in organizations and the two proposed 
frameworks provide structure for further application of, and investigation into, optimal levels of IT investments in 
training. For starters, practitioners might consider developing metrics to capture user responses to system training 
and developing data stores of such information. At some point, these databases will yield interesting patterns 
between system training and adoption. 
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