
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

Specifying the Behavior of UML Collaborations
Using Object-Z
Joao Araujo
Universidade Nova de Lisboa, ja@di.fct.unl.pt

Ana Moreira
Universidade Nova de Lisboa, amm@di.fct.unl.pt

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Araujo, Joao and Moreira, Ana, "Specifying the Behavior of UML Collaborations Using Object-Z" (2000). AMCIS 2000 Proceedings.
364.
http://aisel.aisnet.org/amcis2000/364

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/364?utm_source=aisel.aisnet.org%2Famcis2000%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Specifying the Behaviour of UML Collaborations Using Object-Z

João Araújo and Ana Moreira

Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de
Lisboa, 2825 Monte da Caparica, PORTUGAL, {ja|amm}@di.fct.unl.pt}

Abstract

UML is a standard modelling language that is able to
specify a wide range of object-oriented concepts. Among
them, we have collaborations, that serve to realise use cases,
a powerful abstraction concept. The behaviour part of a
collaboration is rendered using collaboration diagrams.
However, the lack of formalisation compromises the
precision of the specification. By using formal description
techniques, such as Object-Z, we can reason about the
requirements and identify ambiguities and inconsistencies
earlier in the development process. In general, we can say
that formalisation helps obtaining a more reliable system.
Our aim is to formalise collaborations Object-Z class
schemas. This is accomplished by proposing an integrated
formal process.

Keywords: Object-oriented analysis, collaboration, Object-
Z, UML

1. Introduction

A collaboration, in UML (Booch 1998), is "a society of
classes, interfaces and other elements that work together to
provide some cooperative behaviour". This consists of a
structural part and a behavioural part. A class diagram
typically specifies the structural part. The behavioural part
is rendered using one or more interaction diagrams, i.e.
sequence and collaboration diagrams. A sequence diagram
shows the time ordering of messages exchanged between
the objects involved, and the collaboration diagram
emphasises the structural relationships among the objects
involved. Both are semantically equivalent.

Collaborations serve to the realisation of use cases. Use
cases, as proposed by (Jacobson 1992), describe functional
requirements of a system, helping to identify the complete

set of user requirements. A use case is a generic transaction,
normally involving several objects and messages. Software
developers are easily seduced by the simplicity and
potentiality of use cases; they claim that use cases are an
easily understood technique for capturing requirements.

However, this is not enough to guarantee that the
requirements do not contain errors, ambiguities, omissions
and inconsistencies. These drawbacks can only be identified
and corrected early in the development process if formal
description techniques are used.

The goal of this paper is to specify the behavioural part
of UML collaborations formally, starting from the
specification of use cases. We will adopt collaboration
diagrams to represent the behavioural part of a
collaboration. This has the advantage over sequence
diagrams because the links among the objects helps
specifying the class diagram of the structural part of the
collaboration.

The formalisation process is not always straightforward
and depends on the skills and familiarisation with the
formal description techniques of the analysts involved in the
specification. Therefore, derivation rules should be provided
to generate a corresponding formal specification of a
collaboration, in order to encourage and speed the
formalisation process. These rules can be given using any
formal specification language. Here, we have chosen
Object-Z (Duke 1991).

2. Related work

Several methods combine formal specification
languages with an object-oriented method. Hammond
(Hammond 1994) integrates the Shlaer-Mellor (Shlaer
1992) method with Z (Spivey 1992). Hammond uses Hall's
recommendations (Hall 1994) for writing object-oriented
specifications in Z. France et al. (France 1997) present an
environment that supports the integration of Fusion
(Coleman 1994) and Z. These approaches do not use a truly
object-oriented formal language, compromising the

380

homogeneity and readability of the specification.
Other works adopt object-oriented formal languages

(Duke 1991; Z.100 1994). Kuusela (Kuusela 1993) use
SDL, but only for the design phase. For the analysis phase
they use OMT (Rumbaugh 1991). Lano (Lano 1995) uses
OMT and Booch (Booch 1994) combined with the formal
languages VDM++ (Durr 1993) and Z++ (Lano 1991).
Moreira and Clark developed ROOA (Moreira 1996) to
build a formal and executable object-oriented specification
from informal requirements using SDL (Z.100 1994) or
LOTOS (ISO 1988). Araújo and Sawyer developed
Metamorphosis (Araújo 1998) to combine an object-
oriented model with Object-Z (Duke 1991). However, none
of them considers formalising UML’s object model (Booch
1998).

There is some work done that uses Object-Z to
formalise UML model components as, for example, class
diagrams (Kim 1999), and persistence, class views and
excluding classes (Araújo 1999).

The work that has been done by Övergaard (Övergaard
1999) presents a formal definition of the collaboration
construct in the UML. Our work concentrates on the
formalisation of collaborations of an application model.

3. Object-Z

Object-Z is a well-known extension of Z to incorporate
object-oriented concepts (Meyer 1998). Object-Z has been
used in many real applications, such as real-time systems in
the telecommunications area. It is a model-based language
that has its roots, like Z, in set theory; its most important
feature is the class schema. A class schema takes the form
of a named box, optionally with generic parameters (see
Figure 1).

The components of this box are:
• a list of visibility that restricts access to attributes

and operations;
• a list of inherited classes;
• a list of type and constant definitions;
• a state schema which defines the class invariant

and its state attributes;
• an initial state schema that specifies the initial

state of the objects;
• a set of operation schemas that specifies the pre

and post conditions of the operations of the class;
• a history invariant that constrains the order of the

operations and is defined using temporal logic.

Figure 1. Object-Z class schema

This last component was determinant for the choice of

this language as it provides a straightforward mechanism to
represent the dynamic behaviour, that fits perfectly to our
purposes.

4. Overview of the Process

In this paper we propose a process that derives a formal
object-oriented specification for the behaviour part of
collaborations, using Object-Z, starting from a use case
model. This process is shown in Figure 2.

The process is iterative and incremental. We do not
propose that a complete set of use cases and collaborations
be found and described before we start drawing
collaboration diagrams and specifying Object-Z class
schemas. Instead, we can start with the subset of the
informal requirements we understand better, define its use
cases and respective collaborations, specify the
collaboration diagrams for each collaboration and from here
generate Object-Z class schemas. Each collaboration,
translated into collaboration diagrams, offers partial views
of several objects. These views when integrated show the
complete functionality of the system.

The formal specification is extracted using a pre-defined
set of rules that is part of the process. These rules are
defined using temporal logic and are applied to each
collaboration diagram. The formal specification presented
here is incremental, and we do not have to formalise the
classes beforehand to formalise the collaboration diagram,
their specification can be done a posteriori.

ClassName [generic parameters]
visibility list
inherited classes
type definitions
constant definitions
state schema
initial state schema
operation schemas
history invariant

381

Figure 2. The process to formalise the behaviour of collaborations

As we understand more of the requirements, we can

introduce either more detailed information in a use case,
or add new use cases and the respective collaborations to
our system. This new information can either be added to
existing collaboration diagrams or new ones can be
created and all the changes will be propagated into the
Object-Z class schemas.

5. Applying the process

5.1 The case study

The case study we have chosen is taken from (Clark
1997). This is a simplified version of the real system.

"In a road traffic pricing system, drivers of authorised
vehicles are charged at toll gates automatically. They are
placed at special lanes called green lanes. For that, a
driver has to install a device (a gizmo) in his vehicle. The
registration of authorised vehicles includes the owner’s
personal data and account number (from where debits are
done automatically every month), and vehicle details.

A gizmo has an identifier that is read by sensors
installed at the toll gates. The information read by the
sensor will be stored by the system and used to debit the

respective account. The amount to be debited depends on
the kind of the vehicle.

When an authorised vehicle passes through a green
lane, a green light is turned on, and the amount being
debited is displayed. If an unauthorised vehicle passes
through it, a yellow light is turned on and a camera takes
a photo of the plate (that will be used to fine the owner of
the vehicle).

There are green lanes where the same type vehicles
pay a fixed amount (e.g. at a toll bridge), and ones where
the amount depends on the type of the vehicle and the
distance travelled (e.g. on a motorway). For this, the
system must store the entrance toll gate and the exit toll
gate."

5.2 Define the use case model

To identify the use case model we need to start by
identifying the actors and corresponding use cases of the
system. According to (Booch 1998), an actor represents a
coherent set of roles that users of the use cases play when
interacting with the use cases. A use case is a description
of a set of sequences of actions that a system performs
that yields an observable result of value to an actor. A use
case model shows a set of actors and use cases and the
relationships among them; it addresses the static use case

Identify
actors & use

cases

Describe
use cases

B uild
collabora tion

diagram s

Form al
S pec ifica tion

Inform al
Requ irem ents

Define
use case m odel

S pecify form al
m odel

Form alise
collabora tion

diagram s

Form alise
collabora tions

S pecify
Collaborations

Identify
collabora tions

382

view of a system. Figure 3 shows the use case diagram of
the road traffic system.

Figure 3. The use case diagram of the Road Traffic
Pricing System

The actors are:

• Vehicle Driver: this comprehends the vehicle,
the gizmo installed on it and its owner;

• Bank: this represents the entity that holds the
vehicle owner’s account;

• Operator: this may change the values of the
system, and ask for monthly debits.

The use cases are:
• Register a vehicle: this is responsible for

registering a vehicle and communicate with the
bank to guarantee a good account;

• Pass a single toll gate: this is responsible for
reading the vehicle gizmo, checking on whether
it is a good one. If the gizmo is valid the light is
turned green, and the amount to be paid is
calculated and displayed; if the gizmo is not
valid, the light turns yellow and a photo is
taken.

• Pass a two-point toll gate: this can be divided
into two parts. The in toll checks the gizmo,
turns on the light and registers a passage. The
out toll also checks the gizmo and if the vehicle

has an entrance in the system, turns on the light
accordingly, calculates the amount to be paid
(as a function of the distance travelled),
displays it and records this passage. (If the
gizmo is not valid, or if the vehicle did not
enter in a green lane, the behaviour is as in the
previous case.)

• Pay bill: this, for each vehicle, sums up all
passages and issues a debit to be sent to the
bank and a copy to the vehicle owner.

5.3 Specify collaborations

Collaborations realise uses cases, through a realisation
relationship (represented by a dashed arrow). To
exemplify this, we choose the use case
PassSingleTollGate, which deals with two situations:
authorised vehicles and non-authorised vehicles. The
associated collaboration for that is
PassSingleTollGateManagement. Figure 4 shows the
realisation of the use case by that collaboration.

Figure 4. The realisation of the use case for vehicle
passing a single toll gate

In the collaboration diagram, objects are shown as
icons whose naming scheme takes the form
objectName:ClassName. Arrows represent the messages
sent in a collaboration and their sequence is indicated by
numbering them. Conditions can be specified between
square brackets and before the names of the messages.
We use separate diagrams for each scenario. Figure 5
shows the collaboration diagram for authorised vehicles,
passing a single toll (PassSingleTollGateOk).

PassTwoPointTollGate

PassSingleTollGate

RegisterVehicle

Operator

Bank

VehicleDriver

PayBill

PassSingleTollGate PassSingleTollGateManagement

383

Figure 5. Collaboration diagram depicting an authorised vehicle passing a single toll gate

As we build the collaboration diagrams, objects, services
and message passing are identified.

5.4 Specify the formal model

Our formal object-oriented specification is centred on
the behaviour of the collaborations. The rules defined to
generate an Object-Z specification from the associated
collaboration diagrams are based on safety, guarantee and
response properties of programs that can be specified by
temporal logic formulas (Manna 1992). The temporal
logic operators used are ! (always) and ◊ (eventually):

1. Safety Property: can be specified by a safety

formula. A safety formula is any formula that is
equivalent to a canonical safety formula !p (p
always holds). Usually, safety formulas represent
invariance of some state property over all the
computations.

2. Guarantee Properties: can be specified by a
guarantee formula. A guarantee formula is
equivalent to a canonical formula of the type ◊p.
This states that p eventually happens at least once.

3. Response Properties: can be specified by a

response formula. A response formula is
equivalent to a canonical formula of the type
!◊p. This states that every stimulus has a
response. An alternative formula is !(p " ◊q),
which states that every p is followed by a q, that
is, q is a guaranteed response to p.

These properties can be classified into safety and
progress (or liveness). A safety property states that a
requirement must always be satisfied in a computation.
Progress properties can be either guarantee or response.
The progress properties specify a requirement that should
eventually be fulfilled. Therefore, they are associated with
progress towards the fulfilment of the requirement.

A history invariant can specify progress issues by
showing how the various messages interact, for example,
when specifying the priority, or the order in which
messages may or may not happen. Collaboration diagrams
show the links, the message passing, and the
synchronisation among objects, which can naturally be
expressed by temporal logic. Therefore, it is practicable
then to translate collaboration diagrams into history
invariants.

A collaboration diagram can be formulated as a class
schema. This contains the objects of the collaboration

:Display

:Light

:Sensor :SingleToll

:GateProcessor:Vehicle

:PriceTable

:UsageDetails

GizmoDetail

 : VehicleDriver

2: GetGizmo

3: CheckGizmo

6: RtnCheckGizmo
12: DisplayAmount

13: DisplayAmount

7: TurnGreen

8: GetType

9: RtnGetType

10: GetPrice11: RtnGetPrice

14: AddUsage

4: CheckGizmo

5: RtnCheckGizmo

1: Read

384

diagram, and defines a history invariant that represents
the sequence of messages itself. The collaboration
diagram PassSingleTollGateOK is used to illustrate the
mapping rules described below.

1. A collaboration diagram can be mapped into
Object-Z as a class schema where its label is
derived from the collaboration diagram name
defined in the respective template. In the example,
the class schema name generated is
PassSingleTollGateOK.

2. The objects that participate in the collaboration
diagram are specified in the state schema definition
part. Anonymous objects must be given a name at
this point, which will be the state variables. Objects
without classes will be declared with type
UndefinedClass.

3. All the objects have to be initialised. Therefore, the
initial state schema of the class consists of a
conjunction of application of Init messages to the
objects that participate in the collaboration
diagram.

4. The message passing of the collaboration diagram
and its ordering is converted into a history invariant
that is expressed by a temporal logic formula.

5. Each message, in a collaboration diagram, is passed
from a sender object to a receiver object, can have
an associated condition and has an sequence
number. Object-Z uses the pre-defined operator op
to specify messages. If we define αi as a message
being sent from a sender to a receiver, we can
formalise it as (op = oi+1.mi) or (conditioni ∧ op =
oi+1.mi) where 1 ≤ i ≤ n. Then we can define the
rules below. In the case of a sequential message
passing, we have:
• if there is only one message, this can be mapped

to the canonical formula !◊αi, where i = 1;
otherwise,

• if there is a sequence of messages, the general
response form is !(αi → ◊β), where αi
represents the first message and β the rest of the
sequence. β has two forms:

• α j with 1 < j ≤ n, to deal with the last message,
and

• α j → ◊ (αj+1 → … ◊ (α n-1 → ◊ α n)…) where 1<j
≤ n.

The Object-Z class schema of the collaboration
diagram PassSingleTollGateOK, illustrated in Figure 6, is
obtained by applying the rules above.

Having specified and formalised collaboration
diagrams for each collaboration identified, we are able to
formalise the whole behaviour of the collaboration itself.

Each collaboration can be mapped into a class schema
following the rules below:

1. The name of the class schema has the same name
of the collaboration. For example, in our case the
class schema name is
PassSingleTollGateManagement.

2. Each collaboration class schema inherits all the
class schemas derived from the respective
collaboration diagrams.

3. Explicit renaming of variables is the responsibility
of the specifier, if this is necessary.

In the example, the collaboration PassSin-
gleTollGateManagement generates the class schema
shown in Figure 7, by applying the rules above.

Figure 6. Class schema of PassSingleTollGateOK

Figure 7. Class schema of the behaviour of the
collaboration PassSingleTollGateManagement

s.Init ∧ st.Init ∧ gp.Init ∧ gd.Init ∧ pt.Init
∧ ud.Init ∧ l.Init ∧ d.Init

PassSingleTollgateOK

 s: Sensor
st: SingleToll
gp: GateProcessor
gd: GizmoDetail
v: Vehicle
pt: PriceTable
ud: UsageDetail
l: Light
d: Display

! (op = s.Read →
 ◊ (op = st.GetGizmo →
 ◊ (op = gp.CheckGizmo →
 ◊ (op = gd.CheckGizmo →
 ◊ (op = gp.RtnCheckGizmo →
 ◊ (op = st.RtnCheckGizmo →
 ◊ (op = l.TurnGreen) →
 ◊ (op = v.GetType →
 ◊ (op = gp.RtnGetType →
 ◊ (op = ud.GetPrice →
 ◊ (op = gp.RtnGetPrice→
 ◊ (op = st.DisplayAmount →
 ◊ (op = d. DisplayAmount →
 ◊ (op = ud.AddUsage))))))))))))))

Init

PassSingleTollgateManagement

PassSingleTollGateOK,
PassSingleTollgateNotOK

385

With the objects, their links, messages and services identified
we can build a class diagram to represent the structural part
of the collaboration. This information, together with our use
case centred specification, can be used to build a formal
specification centred on the objects that compose the system.

6. Conclusion

The process described in this paper provides a set of
rules to transform collaborations (and collaboration
diagrams) into an object-oriented formal notation (Object-
Z). The work described here has the exclusivity to
introduce rules to transform the collaborations into
Object-Z’s class schemas. Translating collaborations into
object-Z specifications provides a sound mechanism to
reason about the semantics of the collaborations. The
integration of the two approaches is synergetic because
the sum of the advantages of these approaches is greater
than if they are considered in isolation. Some of the
advantages identified are:

• This encourages the formalisation of the system
at early stages;

• This normalises different notations into one
precise mathematical notation;

• This favours traceability;
• This promotes a deep reasoning about the system,

as the language has a mathematical semantics.
Nevertheless, more work must be done. In particular,

we need extend our formal process to handle concurrency
from the point of view of an object that receives
simultaneously the same message from different senders,
and from an object that broadcast a message to different
objects. Also, we need to integrate this work with a
formalisation process that builds a specification centred
on objects. To improve the process, reverse engineering
should be defined, i.e., from class schemas we should
obtain the informal model components automatically.
This is useful to promote modifiability and traceability.

References

Araújo, J. and Sawyer, P. “Integrating Object-Oriented
Analysis and Formal Specification,” Journal of Brazilian
Computer Society (5:1), 1998.

Araújo, J. and Moreira, A., Sawyer, P. "Specifying
Persistence, Class Views and Excluding Classes for
UML," 12th International Conference on Software
Engineering, Paris, France, December 1999.

Booch, G. Object-Oriented Design with Applications,
Benjamim-Cummings, Menlo Park, California, 1994.

Booch, G., Rumbaugh, J. and Jacobson, I. The Unified
Modeling Language User Guide, Addison-Wesley,
Reading, Massachusetts, 1998.

Clark, R. and Moreira, A. Constructing Formal
Specifications from Informal Requirements, Software
Tecnology and Engineering Practice, IEEE Computer
Society, Los Alamitos, California, July 1997, pp. 68-75.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist,
H., Hayes, F. and Jeremaes, P. Object-Oriented
Development - The Fusion Method, Prentice-Hall,
Englewood Cliffs, New Jersey, 1994.

Duke, D., King, P., Rose, G. A. and Smith, G. "The
Object-Z Specification Language," Technical Report 91-
1, Department of Computing Science, University of
Queensland, Australia, 1991.

Durr, E. "VDM++: A Formal Description Language for
Object-Oriented Designs," IEEE CompEuro, 1991, pp.
214-219.

France, R., Bruel, J.-M. and Larrondo-Petrie, M. M. “An
Integrated Object-Oriented and Formal Modeling
Environment,” JOOP (10:7), 1997.

Hall, A. "Specifying and Interpreting Class Hierarchies in
Z," 8th Z User Workshop, Cambridge, U.K., 1994.

Hammond, J. "Producing Z Specifications From Object-
Oriented Analysis," 8th Z User Workshop, Cambridge,
U.K., 1994, pp. 317-336.

ISO, Information Processing Systems - Open Systems
Interconnection - LOTOS: A Formal Description Technique
Based on the Temporal Ordering of Observational
Behaviour, International Standard 8807, ISO, 1988.

Jacobson, I. Object-Oriented Software Engineering - a
Use Case Driven Approach, Addison-Wesley, Reading
Massachusetts, 1992.

Kim, S. and Carrington, D., Ed. "Formalizing the UML
Class Diagram Using Object-Z," UML'99: Beyond the
Standard, Lecture Notes in Computer Science, R. France
and B. Rumpe (eds.), vol. 1723, Springer-Verlag, Berlin,
Germany, 1999, pp. 83-98.

Kuusela, J. and Kenttunen, E. "Integrating SDL and
Object-Oriented Analysis Through OMT/SDL," SDL'93,
North Holland, 1993.

Lano, K. "Z++, An Object-Oriented Extension to Z,"
Workshop in Computing, J. Nicholls (ed.), Springer-
Verlag, Oxford, U.K, 1991.

386

Lano, K. Formal Object-Oriented Specification
Development, Springer-Verlag, Heidel-berg, Germany,
1995.

Manna, Z. and Pnuelli, A. The Temporal Logic of
Reactive and Concurrent Systems, Springer-Verlag,
Berlin, Germany, 1992.

Meyer, B. Object-Oriented Software Construction,
Prentice-Hall, Upper Saddle River, New Jersey, 1998.
Moreira, A. and Clark, R. “Adding Rigour to Object-
Oriented Analysis,” Software Engineering Journal (11:5),
1996, pp. 270-280.

Övergaard, G. A Formal Approach to Collaborations in
the Unified Modeling Language," UML'99: Beyond the
Standard, Lecture Notes in Computer Science, R. France
and B. Rumpe (eds.), vol. 1723, Springer-Verlag,
Heidelberg, Germany, 1999, pp. 99-115.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and
Lorensen, W. Object-Oriented Modeling and Design,
Prentice Hall, Englewood Cliffs, NJ, 1991.

Shlaer, S. and Mellor, S. Object Lifecycles: Modelling the
World in States, Yourdon Press, Englewood Cliffs, New
Jersey, 1992.

Spivey, J. M. The Z Notation: A Reference Manual,
Prentice-Hall, Hemel Hempstead, U.K., 1992.

Z.100. Specification and Description Language SDL,
ITU-T, 1994.

387

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Specifying the Behavior of UML Collaborations Using Object-Z
	Joao Araujo
	Ana Moreira
	Recommended Citation

