
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

Software Volatility: A Stystem-Level Measure
Evelyn Barry
Carnegie Mellon University, eb48@andrew.cmu.edu

Chris F. Kemerer
University of Pittsburgh

Sandra A. Slaughter
Carnegie Mellon University

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Barry, Evelyn; Kemerer, Chris F.; and Slaughter, Sandra A., "Software Volatility: A Stystem-Level Measure" (2000). AMCIS 2000
Proceedings. 365.
http://aisel.aisnet.org/amcis2000/365

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/365?utm_source=aisel.aisnet.org%2Famcis2000%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Software Volatility: A System-Level Measure

Evelyn Barry, Carnegie Mellon University, Graduate School of Industrial Administration,
eb48@andrew.cmu.edu

Chris F. Kemerer, University of Pittsburgh, Katz School of Business
Sandra A. Slaughter, Carnegie Mellon University, Graduate School of Industrial Administration

Abstract

 With change our only constant, information systems
researchers appreciate the need to measure and
understand change processes occurring in software
systems (i.e., software volatility). In this study we define
a system-level multi-dimensional measure of software
volatility. This measure can be used both quantitatively
and qualitatively to analyze system behavior. We
describe the lifecycle volatility of three application
systems. We also discuss use of software volatility as a
qualitative measure to interpret system behavior for
software portfolio management.

Keywords: software volatility, software change, software
lifecycle, software measurement, software maintenance

Introduction

 We have all heard the adage "The only thing constant
is change". As researchers in information systems we
recognize the need to measure and understand change
processes occurring in software systems (i.e., software
volatility). Software changes occurring over system
lifecycle maintenance have traditionally been tracked and
analyzed at the program level. To more fully understand
lifecycle transformations occurring in software systems a
more in-depth approach is required. In this study we
define a system-level multi-dimensional measure of
software volatility. This volatility measure can be used
both quantitatively and qualitatively to analyze system
behavior. We demonstrate its use by describing the
lifetime volatility of three application systems. We also
discuss use of software volatility as a qualitative measure
for managers to categorize and interpret system behavior.

Defining Volatility

 Software volatility is a measure of lifecycle changes
occurring in software systems. Traditional system-level
versioning fails to track the size or frequency of software
changes. Measures of software modification size, or
counts of modifications over time, are usually maintained
at the program or module level. None of these measures
allow direct comparison across systems of varying size
and/or age. We seek a system-level volatility measure
expressed as a non-negative number with scale
invariance. To allow comparison across systems the

measure also needs an upper bound (Allison, 1978). To
find such a measure of software volatility we examine
measures used in other fields. In their discussion of
environmental variation, Wholey and Brittain (1989)
describe three dimensions of environmental change:
frequency, amplitude and predictability of variation. We
apply these dimensions to software volatility.

 Amplitude describes the magnitude of change. It can
be expressed as the size of system modifications. We
establish a system-level measure of amplitude as the
change in application system size. A number of size
metrics are available, including lines of code (LOC) and
function points (Boehm, 1984; Albrecht and Gafney,
1983; Grady, 1987; Symons, 1988). Normalized size
measures are needed to provide a bounded measure and
allow comparison of amplitude, e.g. [change in LOC /
total LOC]. Amplitude and normalized amplitude can be
measured at regular time intervals throughout a system's
lifetime.

 Frequency describes time intervals between change
events1. We begin by providing a definition of mean time
since software modification, MTSM. This measure is
similar to measures of mean time between failures found
in manufacturing and software reliability engineering.
We are examining intervals between software
modifications regardless of the motivation for those
modifications. Software reliability studies only measure
intervals between software failures (Lyu, 1995). We
define MTSM as the mean of the intervals between
change events occurring in a system. Normalized MTSM,
NMTSM, is the ratio of MTSM to the age of the
application system. MTSM and NMTSM can be
calculated at regular time periods throughout a system's
lifecycle.

 Predictability describes the probability that software
modifications occur at the frequency described by
NMTSM. Variance and standard deviation can be used in
this way. However, they are not scale invariant.
Predictability can be expressed as a measure of relative
dispersion, or the dispersion of a variable about its mean
value. The family of Gini indices for social-evaluation
functions measures relative dispersion. The coefficient of
variation allows comparison of dispersions for widely

1 A change event is a recorded software modification or program
creation.

474

varying groups of data, but it is not bounded. By
definition, the Gini coefficient ranges from zero (no
dispersion) to one (maximum dispersion) (Donaldson and
Weymark, 1980). We use the Gini coefficient to
represent the degree of irregularity in the overall pattern
of environmental change. This measure is particularly
useful for the analysis of software volatility, as it relates
to a measure of the predictability of behavior among the
programs in a software system. The Gini coefficient can
be calculated for each time period in a system's lifecycle.
We summarize the dimensional measures of volatility in
Table 1.

Empirical Evaluation of Measures

 Our research site is a large mid-Western retailer that
has a portfolio of 23 legacy systems under maintenance.
Over the course of the portfolio's 20-year history, the
maintainers kept a detailed log of every modification
made by recording date, purpose and type of change
(Kemerer and Slaughter, 1999). Changes in application
system size were calculated for each month in the
portfolio lifecycle. We calculated Normalized LOC
(NORMLOC), NMTSM and Gini coefficient for each
month of each application's lifecycle.

 Correlations of these dimensions of volatility are
presented for three application systems in Table 2.What
do these correlations tells us? Financial system: This is
the oldest of the three applications with 246 months (20+
years) of productive life. There is a significant
association among the measures of volatility. Larger
modifications (NORMLOC ↑) are associated with shorter
change intervals (NMTSM ↓) and a wider dispersion of
volatility (Gini ↑).
Manifest system: This application is 10+ years old.
Amplitude (NORMLOC) does not have a significant
association with either frequency (NMTSM) or
predictability (Gini coefficient). There is a significant
association between frequency and predictability
demonstrating that when change intervals decrease
(NMTSM ↓), dispersion of volatility increases (Gini ↑).
Order Management system: This application is also 10+
years old. The only significant association in this case is
that between amplitude and predictability. For Order
Management, larger modifications (NORMLOC ↑) are
associated with wider dispersion of volatility (Gini ↑).

 These correlations provide a holistic view of the
lifecycle software volatility. How could this information
be used to describe differences in behavior as systems
age? One approach would be to show the movement of a
system through a space defined by the dimensions of
volatility. We begin by creating a 2-dimensional space
defined by frequency (NMTSM) and predictability (Gini
coefficient). Movements were smoothed by classifying
frequency as high/low for each month by comparing

respective values with the lifecycle dimension means for
each application. These categorical data were examined
with non-parametric sequence analysis and gamma
analysis techniques2 (Pelz, 1985). The resulting gamma
analyses are displayed as Table 3.
Financial System: Gamma analysis identifies 3 phases of
system volatility behavior3. The initial phase shows a
stable system with predictably long change intervals. The
second phase shows high volatility with short change
intervals and unpredictable behavior among the programs
in the system. In the third phase, the behavior of the
system becomes more predictable although the system
continues to experience short change intervals.
Manifest system: Gamma analysis identifies 4 phases of
system volatility behavior. As with the Financial system,
the initial phase shows a system with predictably long
change intervals. The second phase is identified as
pending, indicating that system behavior is so inconsistent
that sequence and gamma analysis is unable to clearly
identify a prevalent behavior classification. The third
phase indicates predictable short change intervals. The
fourth phase identifies a system with unpredictable and
frequent modifications.
Order Management system: Gamma analysis identifies 4
phases for this application. In contrast to the other
systems, Order Management starts with predictable but
short change intervals. The second phase continues to
show predictable behavior with long change intervals.
The third phase indicates long change intervals but with a
high Gini coefficient designating a wide dispersion of
change interval length among the system's programs.
System behavior deteriorates in the last phase that is
identified as pending.

 The next step is to add amplitude as a third dimension
creating 2 layers of these same categories with either high
or low amplitude classifications. We can then study the
progress of a system through the defined 3-dimensional
space as it evolves.

Discussion

 Clearly lifecycle patterns of behavior differ among
these three applications. Use of non-parametric sequence
and gamma analysis can be used for high-level
interpretation of differences in system behaviors. Further
investigation of application characteristics and other
exogenous variables can contribute to our understanding
of the evolutionary processes involved in these behaviors.
By using quantitative system-level measures of software
volatility with parametric analyses we can increase our
ability to predict software system lifecycle behavior.
With further analysis, we can use these measures to

2 Winphaser software is used for sequence analysis mapping
procedures.
3 A phase is identified by the software as 3 consecutive time periods (i.e.
months) of matching behavior classification.

475

identify lifecycle stages in application systems and more
precisely identify the best time to repair or replace a
software system.

References

Allison, Paul D., "Measures of Inequality", American
Sociological Review, Vol. 43, December 1978, pp. 865-
880.

Donaldson, David and Weymark, John A., "A Single-
Parameter Generalization of the Gini Indices of
Inequality", Journal of Economic Theory, 1980, Vol. 22,
pp. 67-86.

Kemerer, Chris F. and Slaughter, Sandra A., "An
Empirical Approach to Studying Software Evolution",
IEEE Transactions on Software Engineering, Vol.25, No.
4, 1999, pp.1-17.

Lyu, Michael R., Handbook of Software Reliability
Engineering, IEEE Computer Society Press, Los
Alamitos, CA, 1995.

Pelz, Donald C., “Innovation Complexity and the
Sequence of Innovating Stages”, Knowledge, Creation,
Diffusion, Utilization, Vol. 6, No. 3, March 1985, pp.
261-291.

Wholey, Douglas R., and Brittain, Jack, "Characterizing
Environmental Variation", Academy of Management
Journal, Vol. 32, No. 4, 1989, pp. 867-882.

LOC Function
Points

Normal
-ized
size

MTS
M

NMTS
M

Gini
coefficien
t

Coefficient
of
variation

If individual elements all
= 0, so does the measure

true true true true true true true

If any element > 0, then
the measure > 0

true true true true true true true

Scale invariant, i.e.
relative value doesn't
change if unit of
measurement changes

true true true true true true true

Bounds (0,
+∞)

(0, +∞) (0, 1) (0, +∞) (0, 1) (0, 1) (0, +∞)

Table 1: Evaluating Measures of Volatility:

Application N (NORMLOC,
NMTSM)
(p value)

(NORMLOC,
Gini)

(p value)

(NMTSM,
Gini)

(p value)
Financial System 246 -0.2405

(0.0001)
0.2253

(0.0004)
-0.7164

(0.0000)
Manifest System 122 -0.1486

(0.1024)
-0.0370

(0.6858)
-0.4828

(0.0000)
Order Management
System

125 -0.1712
(0.0563)

-0.1891
(0.0347)

-0.0601
(0.5057)

Table 2: Correlation of dimensions of Lifecycle Software Volatility

Application 1st phase 2nd phase 3rd phase 4th phase
Financial system High NMTSM,

low Gini
coefficient

Low NMTSM,
high Gini
coefficient

Low NMTSM, low
Gini coefficient

Manifest System High NMTSM,
low Gini
coefficient

Pending Low NMTSM, low
Gini coefficient

Low NMTSM,
high Gini
coefficient

Order
Management
system

Low NMTSM, low
Gini coefficient

High NMTSM,
low Gini
coefficient

High NMTSM,
high Gini
coefficient

Pending

Table 3: Gamma Analysis4

4 All precedence and sequence scores were significant in the gamma analysis for these 3 application systems.

476

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Software Volatility: A Stystem-Level Measure
	Evelyn Barry
	Chris F. Kemerer
	Sandra A. Slaughter
	Recommended Citation

