
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

Realizing an Integrated Electronic Commerce
Portal System
Matthias Brook
WebService Haltern, mbrook@ws-haltern.de

Volker Gruhn
Dortmund University, gruhn@cs.uni-dortmund.de

Lothar Schoepe
Dortmund University, schoepe@icd.de

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Brook, Matthias; Gruhn, Volker; and Schoepe, Lothar, "Realizing an Integrated Electronic Commerce Portal System" (2000). AMCIS
2000 Proceedings. 279.
http://aisel.aisnet.org/amcis2000/279

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/279?utm_source=aisel.aisnet.org%2Famcis2000%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Realizing An Integrated Electronic Commerce Portal System

Matthias Book, WebService Haltern, mbook@ws-haltern.de
Volker Gruhn, Department of Computer Science, Dortmund University, gruhn@cs.uni-dortmund.de

Lothar Schöpe, ICD e.V., Dortmund, schoepe@icd.de

Abstract

This experience report1 describes the design and
implementation of an electronic commerce portal system
for insurance companies which supports the insurance
agents in their daily work. The electronic commerce
portal, called IPSI, is used within an intranet. The
insurance agents need information about their industrial
and private customers and have to be supported in
organizing their work by an organizer with reminder
function, address management, etc. The insurance
company has the goal to provide its employees with the
most current information about its product portfolio and
tariffs as well as wordings of the law and comments on it.
An electronic commerce portal therefore has to provide a
multitude of functions. The advantage of a portal lies in
the integration of different software systems that provide
these functions and thus leads the users directly to the
desired information. They do not have to search
awkwardly and are not served with irrelevant information.
An object oriented design using UML, the realization of
adequate adaptors for the integration of different
heterogeneous software systems using the Java
programming language, and the use of the middleware
CORBA for communication within the portal were
objectives of the project. This project was realized by the
University of Dortmund in cooperation with different
insurance and software companies. The electronic
commerce portal was implemented as a prototype for a
certain insurance company, including the integration of
one of their legacy systems.

Introduction

Conventional business transactions – i.e. transactions
not supported by information technology (IT) – are
conducted nowadays by media like paper, telephone or
fax (Zwass, 1996; Zwass, 1999). IT-supported business
transactions use media like electronic mail, EDI, WWW
and other Internet services (Chesher and Kaura, 1998;
Conelly, 1997). On an abstract level, partners in business
transactions – either electronic or conventional – are
supplier and customer. In special businesses, however,
they can be called supplier and consumer, addressee and
provider, or producer and supplier but also management
and employee.

1 This work has been partially supported by ESPRIT Project Process
Instance Evolution (PIE) under sign 34840.

These roles – supplier and customer – can be taken by
companies, administrations or private persons. If the role
of the supplier as well as the role of the customer is taken
by a company, the business transaction is called business-
to-business (B2B). If the role of the customer is taken by
a private person, the business transaction is called
business-to-consumer (B2C). Analogously, the roles can
be taken by an administration. In that case, the business
transactions are called administration-to-consumer (A2C),
administration-to-administration (A2A) or business-to-
administration (B2A). Business transactions within a
company – between management and employees, without
external partners – are called business-to-employee
(B2E).

In electronic commerce as well as electronic business,
suppliers and customers communicate electronically by
means of a data communications network (Adam and
Yesha, 1995). The Internet with its protocols (TCP/IP,
FTP, NNTP, SMTP, HTTP, etc.) and services (Usenet, e-
mail, WWW, etc.) represents such a data communications
network.

The common aim of electronic business and electronic
commerce is the electronic support of business
transactions or market transactions. This is realized either
by supporting the supply chain (ordering, billing,
payment) between different suppliers or by supporting
marketing, sales, distribution and after-sales support of
products or services (Schmid and Lindemann, 1998) for
customers. Not only services like stock exchange news,
insurances or weather prognosis etc. can be supported by
electronic commerce, but also communal administration
services and tax declaration.

While electronic commerce primarily supports private
customers, electronic business, on the contrary, does not
involve private customers but supports electronic business
transactions between companies, administrations or
between management and employees. In this context, an
employee is not seen as a private customer.

Any kind of electronical business transaction
conducted between two partners is supported by one or
more different software systems. Each partner of the
electronic business transaction uses individual and
specific, simple or complex software systems to support
his own business transactions., e.g. SAP B2B-
Procurement, EDI/EDIFACT for B2B or various shop
systems for shopping or auctioning, which are partially
based on Internet client/server techniques. The set of

156

specific software systems of all partners involved in an
electronic commerce transaction form an electronic
commerce system. To build such an electronic commerce
system, these software systems can be integrated in a
rather tight or more lose way. Thus, a shop system
consisting of a web browser and a web server with
heavyweight extensions is an electronic commerce /
electronic business system, as are two connected
EDI/WEB converters for commodity management
systems.

In this context, an electronic commerce portal – i.e. an
integration platform for different software systems like
legacy, web, Internet or office systems – is also an
electronic commerce / electronic business system.
However, an electronic commerce portal which is used in
an intranet supports only business-to-employee
transactions (B2E). Communication between management
and employees (e.g. agents of an insurance company), but
also between different employees, is supported by
providing information about the product portfolio, tariffs,
customers and contacts within the electronic commerce
portal and its subsystems. An additional feature for an
intranet portal supporting business-to-employee
transactions is the integration of the functionality of
legacy systems. In contrast to internet portals, access to
the services provided by the intranet portal is limited to a
special user group (here: insurance agents).

Architecture of the IPSI portal system

During the information analysis of the IPSI project, it
was recognized that the electronic commerce portal serves
as an integration platform for different heterogeneous
subsystems. Based on a 3-tier-architecture, the user
interface and data repository are separated from the
functional application logic (Lewandowski, 1998). On the
level of the functional application logic, the following
subsystems of an electronic commerce portal have been
identified:

Office System:2 The office system manages contact
addresses and scheduled appointments. For addresses,
remote data and local data are distinguished: While
remote data is managed by the partner management
system of the insurance company, local data is managed
by an office system on the user’s computer in order to
satisfy his privacy requirements.

Content Management System: Information of any
kind is supplied by the content management system. Each
employee of a company (e.g. management, back office
employees or agents of the insurance company) can

2 The management of addresses is realized by a traditional host system
like IBM MVS (for remote data) and additionally by a local office
system like Lotus Organizer or Microsoft Outlook (for local data).
Access to the remote data is provided by the electronic commerce portal
via an XML interface. The synchronization of remote and local data is
also guaranteed by the electronic commerce portal.

provide information for all others. Governed by individual
access rights, every employee can get information from or
put information into the content management system for
every other employee (e.g. new product portfolio,
handbooks, marketing materials, comments to the law,
decisions in the context of insurances, etc.). The content
management system will organize this information using
different views and access rights.

Procurement System: The procurement system offers
consumer goods (e.g. laser printers, toner, pencils, etc.)
and services (e.g. courses, trainings, seminars, etc.). Every
insurance agent can order consumer goods for his daily
work. The management can monitor the orders and
control the costs caused by the insurance agents.

Communications System: The communications
system represents the interface to telecommunications
media like mobile phones, fax and e-mail. The
communications system is able to send documents,
notifications or reminders by e-mail, Short Message
Service (SMS) or fax. Notifications and reminders are
sent at a pre-defined time set by the office system.

Portal Administration System: The portal
administration system serves as the single point of login,
i.e. the user of the electronic commerce portal does not
need to authorize himself at each subsystem of the portal.
The second purpose of the portal administration system is
the analyzation and presentation of the log files of the
subsystems.

Search System: The search system allows the user to
search for information in the entire electronic commerce
portal, based either on full text scan retrieval or
predefined keywords. The results of a search request can
be appointments, addresses of customers, information
from the content management system, ordered goods or a
combination of these elements.

Legacy System: A legacy system is an external
system not included in, but connected to the electronic
commerce portal. Legacy systems are realized as host
applications.

The portal user interface consists of web pages written
in Hypertext Markup Language (HTML). For data
management, a relational database management system is
used if the subsystems do not have their own repository.
Now, let’s take a closer look at the system architecture
(Figure 1):

157

Figure 1. System Architecture

Office

Content
Management

Procurement

Legacy

Communications

Workflow

Search

Admin

Middleware (CORBA)Adaptor Subsystem

HTML Page /
WML Deck

Dispatcher

Formatter

User Interface

Controller

Office, content management, procurement, legacy and
communications are all external systems. To avoid
building these from scratch, it was decided to integrate
existing solutions into the electronic commerce portal.

Since the interfaces used to access the external
systems are very different, each one is connected to the
central middleware „backbone“ via an individual adaptor.
Each adaptor provides a set of methods to the middleware
that encapsulates the native interface of the external
system. This way, the (possibly complicated) native
interface does not need to be publicly known in order to
access its functionality. Instead, other subsystems can
simply use the methods provided by the adaptor. For
example, to send an e-mail via the communications
system, it is sufficient to call the respective method of the
communications adaptor which will then take care of
constructing a RFC822-compliant message (Crocker,
1982) from the supplied parameters, setting up a session
with the SMTP server and sending the e-mail.
Furthermore, the encapsulation allows for an easy change
of external systems: If a system’s native interface
changes, only its own adaptor must be rewritten while all
other subsystems remain untouched.

The user interacts with the electronic commerce portal
primarily via a web browser (other user agents such as
mobile phones are also allowed by the system
architecture). This has important implications for the
control flow within the system: In traditional software
systems, the dialog can be controlled by the system to a
large extent: For example, the system can open a modal
dialog box at any time, forcing the user to take some
specific action before he can do anything else (Nielsen,
1997). On the web, however, all actions are initiated by
the user. The server cannot push information to the
browser that the user did not request.3

3 This is true for a user interface built from plain HTML pages. Of
course, one might conceive a client-side Java applet displaying
information pushed to it by the server. However, this would require a
Java-capable user agent, ruling out most of the currently available
mobile agents like WAP phones, organizers etc. Plain HTML, on the
other hand, makes the least assumptions about the target platform, and
the subsystems producing it can easily be adapted to generate similar
formats like Wireless Markup Language (WML).

Consequently, the external systems (office, content
management etc.) of the electronic commerce portal
remain passive and act only on user requests passed to
them via the path depicted in Figure 2:

Figure 2. Communication within the Electronic
Commerce Portal

HTML Page /
WML Deck

Dispatcher

Search
Controller

Content
Management

Office Legacy

HTTP Request HTTP Response

Request Object Response Object

Query
Object

Result
Object

Formatter

User Interface

C
om

m
un

ic
at

io
n

vi
a

D
ire

ct
 M

et
ho

d
C

al
ls

C
om

m
un

ic
at

io
n

vi
a

M
id

dl
ew

ar
e

(A
da

pt
or

s
no

t s
ho

w
n

fo
r

cl
ar

ity
)

Result
ObjectResult

Object

Query
Object Query

Object

Response
Object

Every user action like clicking on a link or submitting
a form generates an HTTP request (Fielding et al., 1999)
which is received by a central dispatcher. The dispatcher
parses the HTTP request string, builds a request object
from its contents and passes it to the controller that is
responsible for handling the requested task. The search
controller and admin controller implement the
functionality of the search and portal administration
systems mentioned earlier; all other transactions involving
the external systems are handled by the workflow
controller.

The controllers might be considered the brains of the
electronic commerce portal: They evaluate the request
objects passed by the dispatcher. Depending on the type
of request, they send commands to or query information
from the external systems, consolidate the results and
return them to the dispatcher. To achieve this, the specific
workflow necessary to fulfill any given request is hard-
coded into the respective controller. For example, upon
receiving a request to search for a particular person in all
the external systems, the search controller queries the
office, content management and legacy systems and
returns the combined results to the dispatcher.

The dispatcher then forwards the response object
received from the controller to the formatter. This
subsystem is responsible for converting the information
contained in the response object into a format the user
agent can render. In most situations, the preferred output
format will be Hypertext Markup Language (HTML)
(Pemberton et al., 2000) which is accessible with a wide
range of user agents. For more exotic user agents such as
WAP phones and organizers, other formatters can
generate output formats like Wireless Markup Language
(WML) (WAP Forum, 1999). This flexibility is one main
advantage of the separation between formatters and
controllers: Since the implementation of the user interface
is concentrated in one dedicated system, the visual

158

presentation of information can be changed or expanded
without touching any of the systems actually providing
the information.

Because of performance considerations and special
system requirements, most external subsystems and the
web server run on separate computers. This distributed
architecture requires a middleware like CORBA to
coordinate the calling of methods and passing of objects
among the different subsystems. Of course, using the
middleware is not necesssary within single subsystems
such as the user interface: For example, the dispatcher
calls a method of the formatter directly to pass a response
object received from a controller.

The dispatcher and the controllers, however, might
run on different machines. Thus, they exchange objects
via the middleware. Two models of communication were
considered during the design phase of the project:

1. Publisher/Subscriber Model: The dispatcher
publishes a request object via the middleware and
announces its availability with an event that describes
the type of request. Controllers can subscribe to events
that are relevant to them and get a copy of the
respective request object from the middleware.

2. Explicit Call Model: Based on the type of request,
the dispatcher decides which controller(s) it must call
to pass the request object to via the middleware.

In the publisher/subscriber model, the dispatcher is
effectively reduced to a mechanism for converting HTTP
request strings to request objects since it does not know
which controller is responsible for which type of request.
While this may at first seem like an elegant decoupling,
there are some pitfalls: Although the “sending“ part of the
dispatcher does not need to be changed when a new
controller is added to the subscriber list, the “receiving“
part must still be prepared to accept result objects from
the additional controller. Regarding the effort for defining
interfaces between the dispatcher and the controllers, the
publisher/subscriber model holds no advantage over the
explicit call model: Both dispatcher and controllers need
to know which attributes are defined for request objects of
any type, regardless of the means by which the objects are
transported. More problems arise from the multi-user
environment of the electronic commerce portal: The
dispatcher needs to know which result object returned by
the controller corresponds to which request object passed
to it. In the explicit call model, this mapping is implicitly
provided by the call stack of the middleware. In the
publisher/subscriber model, each request object (and the
objects passed between controllers and subsystems)
would have to be tagged with a unique identifier in order
to track the incoming result objects – an unnecessary
overhead.

Controllers and subsystems communicate by
exchanging “business objects“, i.e. entities that are central

to the workflow in the electronic commerce portal. The
following business objects are therefore known to all
controllers and subsystems:

• User
• Contact
• Appointment
• Task
• Message
• Shop Item
• Order
• Order History
• Search Request
• Search Result

To schedule an appointment, for example, the
workflow controller creates an appointment object from
the data received by the dispatcher and passes it to a
method of the office subsystem that adds the appointment
to the user’s calendar. If the user chooses to be reminded
of the appointment by e-mail in time, the workflow
controller additionally creates a message object, connects
a copy of the appointment object to it and passes it to the
communications system which will queue it for e-mail
delivery at the time requested by the user.

Realization

The first phase in the process of realizing the
electronic commerce portal was an analysis of the content
and function requirements. To gain insight into the portal
users’ needs, the project team visited several insurance
companies. Through demonstrations of systems currently
used by insurance agents and discussions with developers,
the team learned about the typical tasks an insurance
agent performs in his daily work and how these can be
supported by software solutions. The results of the
analysis were organized by breaking the more
comprehensive tasks down into singular activities which
were then prioritized and documented in requirement
forms.

Based on the requirement forms, the subsystems
office, content management, procurement,
communications, legacy, search and administration were
identified. For each of these subsystems, a make-or-buy
decision had to be made. After evaluating existing
solutions and considering the effort for developing a
subsystem from scratch vs. integrating the existing
solution, the team chose the integrative approach for most
systems, namely:

• Office: Outlook 98 by Microsoft Corporation (Byrne,
1999)

• Content Management: Pirobase 4.0 by PiroNet AG
(Pironet, 2000)

• Procurement: SmartStore Standard Edition 2.0 by
SmartStore AG (SmartStore, 2000)

159

• Communications:
• e-mail: JavaMail by Sun Microsystems, Inc. (Sun,

2000)
• Fax: sendfax – Freeware; included in Linux 6.3

(i368) by SuSE GmbH (SuSe, 1999)
• SMS: yaps – Freeware; included in Linux 6.3

(i368) by SuSE GmbH (SuSe, 1999)
• Legacy: Sample partner database of the Continentale

Versicherung

The search and administration systems were not
classified as external systems but as controllers since they
actively request or modify information of the other
systems.

To test the feasibility of these decisions, the team
programmed cut-through prototypes, i.e. “quick-and-
dirty” implementations of the adaptors described in the
system architecture. The goal of these prototypes was to
prove that it is possible to encapsulate the native
interfaces of the external systems and make their key
features accessible via the adaptors. This goal was met for
all subsystems, clearing the way for the next phase of the
software development process.

For the object oriented design phase, the team used the
Unified Modeling Language (UML) (Booch et al., 1999).
The key features of all subsystems were modeled in use
cases in order to identify business objects and possible
dependencies between the subsystems. Based on the
insights gained in this step, concrete classes were defined
for each subsystem. To ensure an easy consolidation of
the results and allow for later changes to the subsystems
without touching any dependent classes, each subsystem
is represented at the “outside” by one boundary class.
This class provides all methods other classes need to
access the subsystem. As an example, let’s consider a
search request handled by the legacy system (Figure 3):

Figure 3. Integration of Legacy System

Legacy
Boundary

Result
Decoder

Query
Encoder

Result
Encoder

Query
Decoder

DBMS

W
or

kf
lo

w
C

o
n

tr
ol

le
r

LegacyPartner Database

XML stream

XML stream

Adaptor Portal Subsystem

Middleware
(CORBA)

Class

Insurance Company System

The large box in the middle is a view inside the legacy
subsystem that we know from previous figures. The
smaller boxes inside represent classes. Because only the
legacy boundary class is connected to the workflow
controller via the middleware, in our example the
controller does not pass the search request object directly

to the query encoder. Instead, the search request is passed
to the legacy boundary class which then passes it to the
query encoder. This class is a part of the adaptor that, as
discussed earlier, hides the native interface of the external
system from the portal subsystem: In the case of the
legacy system, queries and results of the insurance
company‘s partner database are XML-encoded (Bray et
al., 1998) for maximum platform and transport
independence. The XML-encoded search query is run
against the insurance company‘s database, and the
encoded result is returned to the legacy subsystem where
the result decoder (another part of the adaptor) creates a
search result object and passes it to the legacy boundary
class, which returns it to the workflow controller.

After consolidation of the designs for subsystems,
controllers and user interface, the team entered the
implementation phase. Most classes were implemented in
the Java programming language (Gosling et al., 1996),
only the adaptor for the office system uses Microsoft
Visual C++ (Kruglinski, 1997) code to access the
Microsoft Outlook 98 API.

Figure 4 shows the homepage of the electronic
commerce portal. After logging into the system, the
insurance agent is presented with all information that is
relevant to him that time: Personal messages, articles of
interest from the content management system, scheduled
appointments and due tasks from the office system, events
and items from the procurement system. Legacy
applications like the partner database and a provisioning
system are accessible via links on the homepage. A search
interface allows for meta searches in selected areas of the
portal.

Figure 4. Electronic Commerce Portal Homepage

Conclusion

In building the IPSI system we had to recognize that
the implementation of a portal system is an integration
engineering task. This had an important impact onto the
software process deployed. Backend integration is based

160

on middleware, frontend integration is based on a
commonly used user interface which called for careful
design.

Most requirements for IPSI were fulfilled by
integrating standard tools. In order to effectively plan the
software process for building IPSI, it was crucial to use
prototypes (compare above). Only after implementing
these prototypes we were able to assess the feasibilty of
the architecture and only then we were able to calculate
duration of the tasks identified and efforts needed for
these tasks. The productive use of IPSI showed that the
openness of the architecture is a crucial issue. Many
further legacy systems had to be added after the initial
release, standard tools were exchanged for individual
customers. All these modifications depend on a clear and
modular architecture. With hindsight, it would have been
useful to develop IPSI as a component-based system on
the basis of a standard component model like JavaBeans
or COM.

Summing this up, the effort for implementing was
lower than initially expected, simply because we were
able to benefit from standard tools. The kind of tasks was
different from what was initially planned, more tasks than
initially planned were integration tasks. In the end only a
few thousand lines of code were written, but this software
was used as glue between existing systems and therefore
required extremely detailed design and careful testing.

References

Adam, N. and Yesha, Y. (eds.) “Electronic Commerce”,
LNCS (1028), Springer Verlag, Berlin, 1995

Adam, N. and Yesha, Y. “Electronic Commerce: An
Overview” in Electronic Commerce, Adam, N. and
Yesha. Y. (eds.) LNCS (1028), Springer Verlag, Berlin,
1995

Booch, G., Jacobson, I. and Rumbaugh, J. The Unified
Modeling Language User Guide, Addison Wesley,
Reading, MA, 1999

Bray, T., Paoli, J. and Sperberg-McQueen, C.M.
Extensible Markup Language (XML) 1.0, W3C
Recommendation 10 February 1998,
http://www.w3.org/TR/1998/REC-xml-19980210 (current
March 2000)

Byrne, R. Building Applications With Microsoft Outlook
2000 Technical Reference, Microsoft Press, 1999

Chesher, M. and Kaura, R. Electronic Commerce and
Business Communications, Springer Verlag, Berlin,
Germany, 1998

Connelly, D.W. “An Evaluation of the World Wide Web
as a Platform for Electronic Commerce” in Readings in
Electronic Commerce, Kalakota, R. and Whinston, A.
(eds.), Addison Wesley, Reading, MA, 1999

Crocker, D.H. RFC822: Standard for the Format of
ARPA Internet Text Messages, ftp://ftp.isi.edu/in-
notes/rfc822.txt (current March 2000)

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P. and Berners-Lee, T. RFC2616: Hypertext
Transfer Protocol – HTTP 1.1, ftp://ftp.isi.edu/in-
notes/rfc2616.txt (current March 2000)

Gosling, J., Joy, B. and Steele, G. The Java Language
Specification, Addison Wesley, Reading, MA, 1996

Kalakota, R. and Whinston, A. (eds.) Readings in
Electronic Commerce, Addison Wesley, Reading, MA,
1999

Kruglinski, D.J. Inside Visual C++ Version 5, Microsoft
Press, 1997

Lewandowski, S. “Frameworks for Component-Based
Client/Server Computing” in ACM Computing Surveys,
(30:1), 1998

Nielsen, J. The Difference Between Web Design and GUI
Design, Alertbox for May 1, 1997,
http://www.useit.com/alertbox/9705a.html (current March
2000)

Pemberton, S. et al. XHTML™ 1.0: The Extensible
HyperText Markup Language. A Reformulation of HTML
4 in XML 1.0, W3C Recommendation 26 January 2000,
http://www.w3.org/TR/2000/REC-xhtml1-20000126
(current March 2000)

PiroNet AG. pirobase® System Architecture,
http://www.pironet.com/servlet/IbMenu/ID=14210
(current March 2000)

Riggins, F. and Rhee, H. “Toward a unified view of
electronic commerce” in CACM (41:10), 1998

Schmid, B. and Lindemann, M. “Elements of a Reference
Model for Electronic Markets” in 31st HICSS, IEEE
Press, 1998

SmartStore AG. SmartStore Standard Edition 2.0:
Eingesetzte Technologien,
http://www.smartstore.de/produkte/se20/techno.asp
(current March 2000)

Sun Microsystems, Inc. JavaMail 1.1.3™ Release,
http://java.sun.com/products/javamail/ (current March
2000)

SuSE GmbH. SuSE Linux 6.3 (i386) – November 1999
“sendfax”: sendfax part of mgetty,
http://www.suse.de/en/produkte/susesoft/linux/Pakete/pak
et_sendfax.html (current March 2000)

SuSE GmbH. SuSE Linux 6.3 (i386) – November 1999
“yaps”: Yet Another Pager Software,
http://www.suse.de/de/produkte/susesoft/linux/Pakete/pak
et_yaps.html (current March 2000)

161

WAP Forum. Wireless Application Protocol: Wireless
Markup Language Specification, Version 1.1, 16 June
1999, http://www1.wapforum.org/tech/documents/SPEC-
WML-19991104.pdf (current March 2000)

Zwass, V. “Electronic Commerce: Structures and Issues”
in IJEC (1:1), 1996

Zwass, V. “Structure and Macro-Level Impacts of
Electronic Commerce: From Technological Infrastructure
to Electronic Marketplaces” in Kendall, K.E. Emerging
Information Technology, Sage Publications, 1999

162

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Realizing an Integrated Electronic Commerce Portal System
	Matthias Brook
	Volker Gruhn
	Lothar Schoepe
	Recommended Citation

